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Abstract

This Bachelor’s thesis details the development of a graphically refined action game by a small-
scale development team under a six month time constraint. The goal is to create a visually pleasing
game with basic playability and network game capabilities. The resulting game is also meant to
be commercially viable, in the sense of having the potential of marketability and being proof of
concept as part of a sales pitch.

The game in question is a racing game called Night Racer, which is created using Microsoft’s XNA
framework with the C# programming language. For making a visually pleasing game easier to
develop, the target hardware is decided to be high-performing computers, which allows for large
amounts of graphical effects to be implemented. Among the techniques implemented in the game
are particle systems, post-processing effects such as bloom, shadows, Phong shading, normal
maps, and environment maps. In the development of such a graphically refined game under time
constraints, gameplay has to come second, but an extendable game engine is implemented to
allow for further development of new, more interesting, game modes.

The result is a visually pleasing game, using graphical effects such as particle effects and pulsating
light sources to provide a sense of constant screen movement. A multiplayer game mode allows
up to four players to compete online, while providing a smooth gaming experience. The game
is however very primitive gameplay-wise, and it is the opinion of the authors that developers
working under a similar set of conditions that a more complete game engine solution than XNA
would allow for further refinement of the graphics, while also allowing more time to be spent on
gameplay.
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Sammanfattning

Detta kandidatarbete beskriver utvecklingen av ett grafiskt snyggt datorspel, utfört av en liten pro-
jektgrupp under kort tid. Projektets mål är att skapa ett estetiskt tilltalande spel med grundläggande
spelbarhet med möjlighet för nätverksspel. Det resulterande spelet är tänkt att vara kommersiellt
gångbart, i bemärkelsen att det ska potentiellt kunna utgöra ett konceptbevis i syfte att rättfärdiga
finansiering.

Spelet i fråga är ett racingspel med titeln Night Racer, och utvecklas med hjälp av Microsofts XNA-
ramverk i C#. För att göra ett estetiskt tilltalande spel enklare att utveckla är projektet inriktat på
hög-presterande datorer, vilket möjliggör implementation av en större mängd av grafiska effekter.
Exempel på de grafiska tekniker vi har implementerat är partikelsystem, post-processing effekter
som bloom, skuggor, Phong shading, normal maps och environment maps. I utvecklingen av
ett så pass grafiskt snyggt spel under tidsbegränsning, så måste gameplay komma i andra hand.
Dock har en spelmotor som gör vidare utveckling av nya, mer intressanta, spellägen enklare
använts.

Resultatet av arbetet är ett visuellt tilltalande spel som använder partikeleffekter och pulserande
ljuskällor för att skapa konstant rörelse på skärmen. Ett flerspelarläge tillåter upp till fyra spelare
att spela emot varandra över nätverk utan att uppfattas hackigt. Spelmässigt är spelet dock
väldigt primitivt, och åsikten av denna rapports författare är att spelutvecklare under liknande
arbetsförhållanden bör överväga färdigskrivna spelmotorer. En sådan lösning skulle låta mer tid
läggas på att polera grafiken, men också möjliggöra ytterligare utvecklingstid på gameplay.
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1
Introduction

Computer graphics is a fast-growing area of research, especially in the video game industry. The
importance of producing visually pleasing games has increased, and the bar of what is considered
visually pleasing is constantly raised. In recent years, computer processing power has increased
tremendously, leading to the possibility of higher graphical fidelity, in turn leading to increased
consumer demand for graphically competitive games. Companies, such as Microsoft, have made
huge investments to meet this demand, and as a consequence, the area of research has developed
very fast (Bracken and Skalski, 2009).

In recent years, many graphical techniques have been developed by research teams and game
engine specialists to improve the graphical appearance of games. These techniques are meant
to portray reality as close as possible. In real-time rendering, the visual phenomena found in
reality, such as shadows, cannot be exactly emulated because of the time it would take to calculate
each frame, and first at about six frames per second, the viewer starts to feel that the images are
indeed moving (Akenine-Möller et al., 2008). The techniques used in games are thus merely visual
approximations of the real world.

This project is a part of a Bachelor’s thesis at Chalmers University of Technology and is carried out
by four students in the Software Engineering department. The assignment received from the de-
partment was to develop a multiplayer racing video game with focus on visuals by programming
graphical algorithms and effects, the specifics of which this chapter aims to expand upon.

1.1 Goal and Purpose
The goal of the project is to design a video game which fulfills a number of requirements.

• The game shall be visually pleasing.

• The game shall offer playability. In other words, the player shall be able to successfully
compete in and finish a race.

• The game shall offer multiplayer capabilities over a local area network and the Internet.

• The game shall be commercially viable.

1
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These requirements are largely self-explanatory, but the definition of what is visually pleasing
in the context of a game is very subjective; accounting for this, the authors of this report offer
the following definition. A visually pleasing game does not necessarily require high resolution
textures and numerous polygons. However, such imperfections are easily noticeable in a scene
with little movement, and therefore it is important to always provide a sense of movement even if
the player is idle. Of course, there cannot be moving objects on the screen at every single moment,
but a sense of movement can be achieved by using graphical effects. This can hide graphical
blemishes and provide an interesting visual experience. Effects for accomplishing this can for
example be pulsating or moving light sources and particles.

Another term that must be defined further is ”commercially viable” which typically refers to if
a product can be sold for profit. In the context of the product detailed in this report, commercial
viability does not mean that the product should be ready for commercial sales by the end of the
development cycle, nor that it is actually intended to be sold at some point. The term is only used
to refer to a product that has the potential of achieving commercial marketability, and is in a state
of development so that it viably could be used as a technological demonstration as a part of a
sales pitch.

The project is developed under a certain set of conditions, in that the project team is composed of
developers with no previous game development experience as well as a time frame of 16 weeks.
With such conditions, the project scope must be well defined and development methods must be
well chosen. It should be noted, however, that the goal is not to have produced a finished game
by the end of the development cycle.

The purpose of this thesis will be to evaluate what methods, techniques and graphical effects can
be used in conjunction with each other to create the previously described video game.

1.2 Problem
A number of interesting problems arise in the development of a game with the previously stated
goals. The game must be visually pleasing, but furthermore also commercially viable, which
means that it can not be merely a demonstration in graphics, but must also offer basic playa-
bility. These problems need to be researched, and the results as implemented in the game will
be presented in this thesis. A number of problems have been identified, which will need to be
researched in the report, and the resulting choices will be used in the game. The problems that
will be researched have been identified, and are are presented below.

• Game engine. Implementation of a suitable game engine, supporting the needed game me-
chanics, logical structure, and graphical techniques chosen for the project. The engine must
also provide an extendable software architecture for making future development possible.

• Level design. Crafting a diverse gaming experience for players by providing varying yet
realistic levels, which presents the problem of finding an approach for making such levels
efficiently.

• Real-time graphics. Identifying graphical algorithms for providing visually pleasing results,
while also keeping acceptable frame rates on the target hardware. Since producing a visually
pleasing game is one of the primary goals of the project, several types of effects need be
studied and implemented; among them are effects for lighting, shadows, reflections, and
particles. As such, the research of graphics will represent a large portion of this report.
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• Optimization. Ensuring that the computer processing power is used efficiently while pro-
viding no degradation of visual quality, so that as many players as possible can viably
experience the gameplay without major performance issues.

• Audio. Providing an immersive gaming experience by using sound in the game, and imple-
menting sounds in the background as well as contextual and positioned sound effects in the
game in an impactful way.

• Multiplayer. Allowing several players to compete against each other without issues with
choppy or otherwise unnatural gameplay by simulating smoothness in cases where suffi-
cient data is unavailable.

1.3 Limitations
In the development of games and software in general, some parts of the project have to be priori-
tized. Choosing a car racing game allows the game mechanics to be straightforward compared to
those of other types of games, such as role-playing games, which allows for more time to be spent
on making the game visually pleasing. As such, the gameplay will be quite limited and may not
provide playability on the same level as commercial games.

The graphics of the game are restricted by the target hardware platform, which is relatively high
performing consumer-grade computers. This is required since a visually pleasing game with
graphical effects requires high-performance graphics processors, and the resulting game will be
presented to fellow students on a set of computers using the NVIDIA GeForce GT 640 graphics
card.

1.4 Method
The thesis is structured as a case study, where each chapter encompasses a field of study relevant to
what needs to be implemented in the game. Each chapter presents the techniques considered and
concludes by presenting the result as implemented in the game. To present the theoretical parts of
the report, applicable literature will be researched. Game development is a largely practical field,
and as such, scientific as well as more informal literature (blog posts for example) from reputable
sources will be part of the research presented in this thesis.

Chosen technologies will be presented by the state of the game after their implementation, typi-
cally with accompanying screenshots visualizing the results of the technology in applicable cases.
Discussions of the efficiency of the technique and its results will then be presented. These sections
are largely practical, and will thus present the findings as original research.

1.4.1 Night Racer

The working title of the game developed in the case study is Night Racer, and it is a car racing game
set in a dark but colorful fantasy world. The choice of setting is made because it was recognized
as rather original for a racing game, but also because it allows for numerous graphical effects
to be integrated more naturally. Night Racer will allow players to drive with real-world cars
on dynamically generated levels, and will also provide a simple multiplayer competitive racing
mode.
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1.4.2 Agile Development

To make a product as polished as possible within a short time frame where progress needs to be
made constantly, it is important to work in an agile fashion. This means working iteratively, where
in each iteration a set of features (milestones) shall be implemented; before and after each iteration,
the product should be functioning and ready for deployment. Agile development allows for a
very dynamic development process, where features can easily be added and removed, and tested
continuously (Fowler, 2005).

1.4.3 Libraries

Existing libraries for car and racing games will be used in order to create a functioning game as
quickly as possible. The purpose of the project is not to build a game from scratch, but rather to use
applicable libraries for physics, collision detection, and network to lessen the workload and make
a better quality game as well. These libraries will be presented in their respective chapters.

1.4.4 Development Environment

The C# programming language and the Visual Studio development environment will be used for
development. XNA 4.0, developed by Microsoft, has been chosen as the development framework
for Night Racer. XNA provides low-level code implementations for rendering graphics and de-
ploying games on multiple platforms (Sanders, 2006) but does not provide an actual game engine.
This, however, allows for greater control of the implementation of graphical effects and other
game code at the cost of higher complexity (compared to using a finished game engine). However,
it is the opinion of the authors that increased control allows a more thorough examination of the
problem statement (see Section 1.2).



2
Game Engine

A major part of the game development process involves programming. As mentioned in Section
1.4.4, the XNA Framework hides most low-level graphics details, however it does not provide a
full game engine. As a result, a game engine must be programmed from scratch for Night Racer.
Thorn (2011) describes a game engine as a non-precise concept but typically involving code for
managing rendering on the screen, loading resources, handling input from the user, applying
physical laws on game entities, and scripting gameplay elements. Management of rendering,
resources, and input are largely provided by XNA and are thus not examined further.

This chapter will examine the problems present in programming the base parts of the game engine
that accommodates implementation of game mechanics by an extendable software architecture.
These parts of the game engine are not directly part of the gameplay of Night Racer but a nec-
essary code base which supports the development of the game. Among these core parts of the
game engine are the overall structure of the game code, the management of different game states,
implementation of game mechanics, game menus, and events. These will all be described in detail,
and in the process, the game logic as implemented in the game will be presented and evaluated
regarding extensibility.

2.1 Game Loop
The very base of a game is the game loop, which is how it updates its state. The frequency of
this update is determined by the game tick, which may occur at a fixed interval or manually in-
voked by the game logic. Night Racer uses the default XNA game tick frequency, which is set to
60 Hz. XNA provides the IUpdateable interface for game objects that should be updated at each
game tick and the IDrawable interface, if the object should be rendered as well. XNA allows for
a highly modular and object-oriented approach through the GameComponent and DrawableGame-
Component base classes, themselves implementing IUpdateable and IDrawable respectively, since
objects implementing these interfaces are easily added to the game loop by registering them as
components.

5
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2.2 States
Night Racer does not consist of only one gameplay screen, but also additional screens showing
menus, game over statistics, and a lobby for multiplayer games. A player must be able to navigate
between these states to start a game, for example, as visualized in Figure 2.1. As such, there needs
to be a way to represent these states in the game engine and make it possible to manage the
transition from one state to the next.

Figure 2.1: A state machine representing a possible state flow for a player of Night Racer, from
start to finish.

2.2.1 Results

An extendable system for creating manageable states has been implemented in the game engine.
To use the implemented state management system, each screen that needs to be shown must
extend the implemented abstract class GameStateView, itself a subclass of DrawableGameComponent.
Each GameStateView shall be associated with a constant from the globally accessible GameState
enumerable, so that there is one instance of GameStateView corresponding to each state. The states
are managed by each GameStateView through the UpdateState method, the code of which is visible
in Listing 2.1.

// class MainMenuView extends GameStateView
public GameState UpdateState(GameTime time)
{

if (input.IsPressed(Keys.Enter) && selectedItem is singleplayerButton)
return GameState.SingleplayerMenu;

// ...
return GameState.MainMenu;

}

Listing 2.1: An abridged code snippet from the UpdateState method of the MainMenuView class, a
subclass of GameStateView responsible for showing the menu when the game is started.

A GameStateView may handle state changes internally by not returning it to the state manage-
ment system, such as when the menu system transitions a menu with another. However, some
state transitions need to be handled by the state management system, implemented in the Game-
Manager class whose game update loop is shown in Listing 2.2, so that new state views can be
initialized.
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// class GameManager
public override void Update(GameTime time)
{

var nextState = currentView.UpdateState();
if (currentState != nextState)
{

switch (nextState)
{

case GameState.Gameplay:
currentView = new GameplayView();
break;

// ...
}

}
currentState = nextState;
base.Update();

}

Listing 2.2: An abridged code snippet from the Update method of the GameManager class,
responsible for managing the game states.

2.2.2 Discussion

The implemented system can manage game states successfully, and it is also very extendable
which is very important for further development. The concept of having a state return the next
state when updated (as seen in Listing 2.1) is quite intuitive, but did present problems since these
components can thus not be updated as typical XNA components by the Update method. This
meant that the GameStateViews could not be added as components in the XNA game loop and had
to be updated explicitly by the GameManager class (see Listing 2.2). However, not using the XNA
component system lead to difficulties in disposing finished GameStateViews from the memory, and
the resulting implementation uses the component system and both the Update and UpdateState
methods.

The problems of this implementation occurred largely due to a lack of knowledge of details in the
XNA framework structure, and in hindsight would have been better implemented after further
research. An alternative implementation that would be more fitting with the component structure
could for example be using a flag in each GameStateView to indicate change in state, which would
mean not having to work around the existing structure of XNA.

2.3 User Interface
Providing a user interface of some sort is essential in all but the most basic video games, so that
players may set up the game and receive information that are not representable directly in the
game world. A game will typically need two types of interfaces to accomplish these goals: a
menu system (in form of front-end as well as in-game menus) and the heads-up display (”HUD”)
respectively.

Fox (2004) presents goals of usability and design in the interface of a game, where simplicity and
depth are paramount but at odds with one another. As for usability, it is important to present
an easy to use menu that allows the player to access the game quickly and without unnecessary
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information and options, but at the same time allowing power users to change options in a more
fine-grained fashion when needed. Therefore, it is important to keep advanced options away from
the menu flow that will take the player to the game and provide good defaults for a player wanting
to start a game immediately. Design-wise, the menu should be consistent with the theme and
color scheme of the game and should not have large, distracting elements. This helps in making
the interface feel like a seamless part of the game and not like a burden.

2.3.1 Results

When starting the game, the player is taken immediately to the front-end menu, displaying the
main menu (shown in Figure 2.2a) which provides options for starting a game in singleplayer
mode, starting a game in multiplayer mode, changing game options, and exiting the game. A
player wishing to start a singleplayer game will be taken to the car chooser menu, where the game
can be started after choosing a car; a player starting a multiplayer game will be asked to connect
to a server and shown the lobby screen (see Section 7.6) before continuing to the car chooser menu.
The options menu provides a few simple options, as seen in Figure 2.2b.

(a) Main menu.

(b) Options menu.

Figure 2.2: The front-end menu system of Night Racer.
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The menus are built around the OverlayView class, which is a drawable component representing
the actual menu. This reusable class helps make the implementation of specific menus simpler,
which allows for further and more complex menus as a future development. OverlayView objects
may be used in more contexts than the front-end menu; one such context is in-game menus that
are rendered on top of the gameplay when Night Racer is paused, which is shown in Figure
2.3.

Figure 2.3: The pause menu shown in Night Racer, which allows the player to exit during game-
play.

A simple HUD has been implemented, which is used to show persistent displays as well as pop-up
notifications, and is shown in Figure 2.4. Persistent HUD displays in the game include a compo-
nent showing the player’s place in the race, a speedometer, and a timer; pop-up notifications are
shown contextually, for example when the player passes a checkpoint or the goal line, and when
the player overtakes another player or is overtaken. Pop-up notifications are animated when ap-
pearing and disappearing to make the interface seem more kinetic, but care has been taken to not
distract the player by making the notifications take up a minor part of the screen and showing
them for no longer than three seconds. Pop-up notifications can easily be shown by a simple
function call by the programmer.

Figure 2.4: The HUD in Night Racer, showing persistent HUD displays marked white and pop-up
notifications orange.
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2.3.2 Discussion

The purpose of the menu system is to provide a simple interface for the user to start the game,
while also providing a reusable interface for further development. In the first respect, the menus
implemented in the game satisfy the simplicity test suggested by Fox (2004), since only two presses
on the Enter button is enough to start the game with a default car chosen. However, the usability
of the multiplayer connect menu is somewhat lacking since the user needs to input an IP address
explicitly. Instead, a server browser of sorts could be implemented, but this would require major
time and resource investments (such as procuring and running a centralized server). Overall,
however, the implemented menus are deemed satisfactory.

Regarding code reusability, the extendable OverlayView class is mostly successful since simple
menus can be implemented in a very simple manner by adding to a list of menu items. However,
a typical placement of menu items may require some additional effort by developers, since the
placement of menu items is standardized as being vertical and straight.

The choices and methods used in the development of the menu system were largely satisfactory,
and provides a more professional quality to the game which assists in satisfying the goals of
commercial viability and playability. The results are especially satisfactory because the initial
vision of the menu system was much more primitive than the resulting implementation. The
increased ambition in designing the menus arose essentially because of momentary inspiration,
but if done again, however, this inspiration would have been better suppressed since it leads to
more time being allocated to something that would have been better spent elsewhere.

2.4 Triggers
A fast-paced game executes many lines of code in every game tick. In such games, a system
for supporting the triggering of multiple contextual events must be provided. Examples of such
contextual events can be thunderstrikes occurring at a fixed time interval and falling trees when
the player passes by. Dictating when events should occur can become very complex since a
game could contain a very large number of events waiting to be executed in some given context.
An approach for implementing such events effectively is using a trigger system (Orkin, 2002).
This section describes the issues related to the implementation of the triggers and presents the
implementation in Night Racer.

2.4.1 Event Triggers

The processor time consumed by a trigger system depends of the number of events due to be
updated at once, and a trigger system with many events would thus need much processing power.
However, in a typical game there are many events that need not be processed at all times. These
events could occur at a time interval, or only in some context depending on the position of the
player, for example.

Physical objects can trigger events, and the more of these objects’ processes actively checking for
the events to be triggered (polling), the slower the game. A cost efficient system for event handling
that prevents duplicate computations is therefore needed, and thus the goal of the trigger system
is to separate the event code of a game object, so that in can be invoked by the trigger system only
when the event is triggered (Orkin, 2002).
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2.4.2 Results

Using a variation of the observer design pattern as described by Gamma et al. (1994), trigger
events declared as actions to be executed are then registered as events which will get notified
whenever the event is triggered. The XNA component architecture allows a centralized trigger
manager to be updated each game tick, which is used to update each trigger and, if triggered,
notify the subscribing events.

In a racing game such as Night Racer, the progress the player can make in the gameplay is quite
simple. This progress can be determined strictly geometrically by the player’s position on the race
track, and thus, tying the trigger system to the race track allows for events to be handled by the
trigger manager based on the position of an object in the game. Such a solution is used in Night
Racer, which allows for implementation of any behavior when the player passes a checkpoint.
Night Racer uses triggers in the game mode system (described in Section 2.5), as well as for
playing sounds contextually.

2.4.3 Discussion

Triggers are an essential part of Night Racer, since they are needed for reacting in contexts such
as passing a checkpoint, which is a large part of the playability offered by the game. The method
of using XNA as a framework has helped in the implementation of the centralized trigger system,
reducing the processor time otherwise used in a polling-based implementation. As such, the
trigger system in the game is quite efficient, and has been found to support very large amounts of
triggers without a noticeable performance impact.

However, the trigger system is rather inflexible in its current iteration. This is mainly because the
triggers can only be triggered based on an objects position on the race track. A more generalized
solution could be triggers that evaluate any boolean expression in each game tick, and instead
provide the race track-based trigger as an extension of this base class. Such a solution would allow
more complex game modes, for example where the objective is destroying the opponents car, to
be developed in the future.

2.5 Game Modes
The term game mode is used in this report to refer to a set of goals that must be achieved to make
progress in the game. Some goals may need to be completed in a specific sequence, while others
may be achievable throughout the gameplay or only contextually. In other words, a game mode is
what the player is encouraged to play through to complete the game. Depending on the player’s
performance in completing the game mode, the outcome of the game may differ. Importantly, a
game mode needs to provide a challenge and preferably a sense of enjoyment.

Some examples of game modes in general are capture the flag and deathmatch, which provides
the same basic gameplay and in some games even uses the same levels, but with two different
goals. In the context of a racing game, game modes may include racing against time, opponents,
or avoiding obstacles.

To make development of game modes viable, both during the development process detailed in
the report and as future work, it is important to provide an extendable software architecture that
allows programmers to define and deploy game modes simply instead of a hard coded system.
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This section will present the considerations that went into implementing game modes in Night
Racer, and conclude by showing a high-level description of the implemented code.

2.5.1 Results

As the first step of implementing an extendable code base for game modes, what makes up a
game mode and how these artifacts can be represented in code must be identified. In the Night
Racer code, a game mode is considered to be split into a number of sequential GameModeStates,
which in turn consists of a list of sequential triggers (see Section 2.4). When all triggers have been
triggered in the GameModeState, the game mode advances to the next state, and when all states
are completed, the game is over. This logic is represented in the GameplayMode, shown in Listing
2.3, which is the foundation of the game mode system.

// abstract class GameplayMode
public void Update()
{

if (!allStatesFinished)
{

GameModeState current = states[currentStateIndex];
current.Update();

if (current.IsStateFinished())
currentStateIndex++;

if (currentStateIndex > states.Count - 1)
{

allStatesFinished = true;
GameOverProcedure();

}
}

}

Listing 2.3: An abridged code snippet from the Update method of the abstract GameplayMode class,
which represents a general game mode upon which others are derived.

A developer adding a game mode to the game needs to extend the GameplayMode class, and imple-
ment the abstract methods Initialize (which prepares the triggers and the list of GameModeStates)
and PrepareStatistics (which calculates end-game information when the game is finished). How-
ever, this system merely keeps the game progressing and encodes the victory conditions. Some
game modes may require further changes to the gameplay, such as adding obstacles to the race
track. Such initializations could, however, easily be made in the Initialize method.

More tangibly, Night Racer uses this system to implement a simple race mode by encoding each
lap around the track as a GameModeState containing a list of triggers where a trigger is positioned
at each checkpoint, which needs to be triggered in a specific sequence by the player. At each
trigger, the race time is recorded and then presented as end-game statistics. The multiplayer race
mode implemented in the game extends this functionality by also keeping track of the lap times
of network players, so that aplayer placements list may be shown as end-game statistics.
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2.5.2 Discussion

The primary concern in developing an extendable code base for game modes was identifying
and distilling what a game mode actually consists of. The concept of providing a set of trigger
collections, where each trigger needs to be activated before the game can progress to the next set of
triggers in the collection, is found to be quite universal of the game modes that have been consid-
ered. In this respect, the implemented solution is very much a success. However, there are some
game modes that cannot be expressed with the current game mode system, but these are largely
due to the rather limited trigger system, which can only express triggers based on an object’s
position on the race track. Using a more generalized concept of a trigger would allow virtually
any game mode to be implemented using the GameplayMode class (for discussions regarding the
trigger system, see Section 2.4.3).



3
Level Design

Video games need to take place in some sort of environment. In a car game, the environment
consists of several levels with different terrain and track layouts. Designing a level is a time
consuming process in game development and the importance thus needs to be evaluated. This
chapter will cover the problem of providing a diverse gameplay experience, and in the process
detail some alternatives for implementation of level design. The level design components detailed
are the terrain and the track. Furthermore, an introduction will be provided to navigation meshes,
which are used to keep the cars on the track, and details about the seeds, which is used for random
generation.

3.1 Terrain
The creation of terrain can be taken in two directions. The first alternative is to design it by
placing every object of the scenery manually, and the second alternative is to leave the creation
up to randomized generation.

The design alternative can be further divided into two rough categories, the first being designing
a complete level and the second is to create terrain blocks. A terrain block is a modeled, often
square, area containing both a piece of the race track and all of the scenery; these blocks are then
fused together to create a complete level. Both of these categories are quite time consuming and
not entirely feasible for this project. Designing terrain blocks would be the preferable choice of
the two, since a finished block could be used in several different tracks.

The final alternative is random generation, which has the potential to look good, if done well.
What generation offers is acceptable quality of content for a relatively minor time investment.
Because of how the generation works, it effectively offers infinite amount of levels, and a high
level of replayability.

3.1.1 Results

The terrain of the game is randomly generated. If the levels were to be manually designed, a
subset of the team would have to be assigned as level designers which would take valuable time
away from other tasks. Dynamically generated levels, while being an interesting challenge (for

14
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both programmers and players), also increase the replayability of the game as the levels will never
look the same after restarting unless a previously saved level was loaded.

To generate the terrain, a process called procedural generation is applied (Frade et al., 2012) using
random values provided by a random number generator (see Section 3.4). In particular, a Perlin
generator, which is a process that utilizes Perlin noise (Perlin, 1985, 2005), is used to calculate a
height map which is then applied to the terrain of Night Racer, seen in Figure 3.1. A height map
is a two dimensional grid array of float values describing the height of the different parts of the
terrain. The Perlin noise follows a sine-like curve and is thus not realistic as an environment. In
order to create a terrain that is not as continuous, the heights generated by the Perlin noise are
perturbed (offset in a random direction) creating additional hills and small mountain ranges as
illustrated by Figure 3.2.

(a) The result of a low level of Per-
lin noise, producing a terrain with
few low height differences.

(b) The result of a medium level of
Perlin noise, producing a terrain
with a larger amount of height dif-
ferences.

(c) The result of a high level of Per-
lin noise, producing a terrain with
very frequent height differences.

Figure 3.1: A sequence of terrains with an increasing amount of Perlin noise.

Figure 3.2: A terrain with a high level of perturbation. As can be seen, there is a higher number of
hills, but there is also a larger difference in heights than the result of a high level of Perlin noise.

The resulting terrain contains a large amount of small hills and some larger mountains; a terrain
that looks highly unnatural, even though it contains many interesting shapes. By using a function
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called erode the terrain near a point is flattened, and as a result smooth edges are eliminated.
The result is that a more interesting terrain is created, with valleys, steep cliffs, and plateaus (see
Figure 3.3). As a side effect, the terrain becomes spiked in places and looks very uninviting. To
remedy this, the terrain is smoothened, reducing the maximum height distance between points,
resulting in the more natural and softer looking terrain visualized in Figure 3.4.

Figure 3.3: The result of an eroded terrain. The effect has created steep cliffs and a more jagged
landscape, and the hills created from perturbation have been molded into a more interesting
terrain.

Figure 3.4: A smoothened terrain. The result from the erode function has been smoothened out,
creating a more natural looking terrain.

3.1.2 Discussion

The final terrains generated are of an acceptable quality and offer interesting scenery for the
player to drive in. The general shape of the terrain contains some oddities, but due to the lighting
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conditions of the game they are not as noticeable as they would be in a more well lit environment.
The largest increase in visual quality would most likely be gained from textures (see Section 4.7)
of a higher quality.

The largest problem with the current terrain is that it is loaded in its entirety into the memory, and
as a consequence consumes a large amount of the available memory resources. If the terrain was
instead split into smaller chunks, and only the necessary parts were loaded into the memory as
needed, the memory consumption would be lowered. As a result, options such as a much larger
terrain or a terrain with a higher level of detail (due to the increase in height point density) would
be possible.

3.2 Track
Racing cars usually drive on roads, as such the created terrain is not an appropriate level to
compete on. Thus there is a need to create a track for the cars to compete on. An easy to use
representation of a track is a curve spline.

Splines are the vectorized implementation of lines or curves built by nodes and their directions.
Compared to a polygon, which is a set of nodes with straight lines between them, splines with
weighted normals affect the lines between the nodes making them more soft and curvy.

3.2.1 Results

Because the terrain was created with procedural generation the choice of creating the track nat-
urally fell on automatic generation with curves, as the alternatives available are unfeasible in
relation to the previous process used. The track is based on a curve spline that passes through a
pre-determined number of nodes. These nodes can be located anywhere on the terrain and the
curve passes through them in the order they were created. However, caution needs to be taken
while placing the nodes, as the resulting curve may contain crossing roads or strange loops due
to the spline’s characteristics.

The resulting curve connects each node with straight lines. In order to get a more interesting track
layout, the direction of the curve in each node is offset by a random value. Each node is also given
a height value which affects the height of the curve. The curve is positioned on the generated
terrain, and the curve receives a width appropriate to the game’s race track. The height map’s
values that intersect with the track are then replaced with the heights associated with the curve,
and the edges between the terrain and the track are interpolated, as illustrated in Figure 3.5.

The latest iteration of the track consists of five nodes which are positioned in a pentagon shape.
The direction of each node is set to point towards the center of the shape in order to minimize the
risk of the curve being located outside of the terrain perimeter, which would result in an exception.
The direction the race takes place in is also randomized each time a level is created.

3.2.2 Discussion

The current version of the track fulfills the goal of offering the player basic playability, the ability to
finish a race. The track’s layout also varies a bit each time it is created and contributes in creating
a more diverse gaming experience. The method, due to its efficiency and relative ease of use, is
also well suited for the scope of the project.
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Figure 3.5: A piece of the track with an example the interpolation between the edges of the track
and the terrain in the foreground.

Due to the low number of nodes, the height difference is applied over a large distance, and it
is thus hard to notice at times. An additional drawback due to the low amount of nodes is the
sparse occurrence of sharp turns. An increase in the number of nodes could result in a more action
packed gameplay with more tight corners to pass, as well as small hills and inclines that result in
the cars jumping into the air.

3.3 Navigation Mesh
The ability to walk around an environment seems quite trivial, but in graphics simulations, objects
have to be defined as solid so other objects can collide with them. Collision detection consists of
programming simulations, and with simpler computations the game can update faster. However,
simplifying the terrain too much can in many cases compromise the visual quality that comes
with a detailed model. Replacing rough areas of the terrain with an approximated surface and
proceed with calculations on this plane will drastically reduce the number of operations required
to determine a collision with an object. This approximation for collision detection is provided
by a navigation mesh (Hale and Youngblood, 2011), the usage of which will be detailed in this
section.

3.3.1 Generating an Approximation

To completely remove the rendered terrain from the equation and replace it with a virtual model
on which collision detection is performed is a common way to minimize costly collision detec-
tion. The collision model is constructed using the track curve, either pre-calculated or generated
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dynamically during execution (Hale and Youngblood, 2011). The resulting model is not rendered,
and only handled logically in the game code.

The term navigation mesh suggests that the approximated terrain is a mesh (see Section 4.1), but
the representation can also exist in other shapes. Another case is where a navigation mesh is made
up from a graph with nodes and edges, allowing widely known graph algorithms such as shortest
path to be used.

3.3.2 Results

The navigation mesh used in the game is modeled as any other three-dimensional object which
the car can perform collision detection against, and is used for keeping the player on the surface
of the terrain and within the borders of the track. Thus, the navigation mesh is used as a tool for
aiding user controlled input as well by keeping the player from leaving the level.

In Night Racer, the navigation mesh is represented as a mesh, and it is pre-calculated from the
same race track data used to generate the terrain, so the car appears to follow the terrain when it is
in fact following the navigation mesh, even though it is not rendered (a visualization can however
be seen in Figure 3.6). The quality of the navigation mesh can be adjusted, where a higher quality
is required for racetracks with sharp turns but a lower quality mesh is sufficient for the race track
used in Night Racer.

(a) The race track in the game, as normally
seen by a player.

(b) The navigation mesh seen on top of the
track, not visible by the player.

Figure 3.6: The navigation mesh used in Night Racer.

Night Racer contains no real physics engine, and as such, the navigation mesh is used in the
game to allow for the simple collision detection needed for a car game. The behavior of the car
is to merely follow the surface of the navigation mesh and no collision detection with other
objects is provided. This does adversely affect the playability, especially in multiplayer game
modes, where tactical collision with opponents may provide gameplay advantages. In future
development, however, a physics engine could be integrated reusing the current mesh and this
explicitly programmed collision detection could be replaced.

3.4 Seed
Randomly generated numbers are often the basis of any event based on chance in programming.
These numbers are provided by a pseudo-random number generator. Generators follow a pattern
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and will output a sequence of numbers depending on a number (seed) that is provided to the
generator. If it receives the same seed, it will output the same sequence of numbers (Knuth, 1997).
This seed is conventionally the system clock and the sequence of numbers is thus perceived as
practically unique each time.

3.4.1 Results

Night Racer uses a single universal number generator, whose seed is set at launch. The seed in the
universal generator can be changed after startup, and since the levels of the game are calculated
using this generator, it can be used as an effective way to distribute a level in the multiplayer
mode. Instead of distributing the entire height map, the curve of the track, and the position of
every piece of the scenery, a single number can be distributed. This is an incredibly efficient way
of handling the data, the downside being that every player has to generate the level.

3.4.2 Discussion

The seed mechanic has several potential uses. A seed can be stored in order to have permanent
access to a level and in effect creating a static set of levels to use in a future campaign mode, or as
a way to challenge your friends. In the latter case, a high score list could be tied to the seed and
thus offer a base for a competitive scene.



4
Real-time Graphics

Render engines used in games are different from those used in 3D modeling packages as they need
to render an image every game tick. Such applications need efficient real-time graphics techniques
to achieve smooth results. Therefore, these techniques need to find approaches to simulate the
real world in a realistic way while keeping the frame rate high.

This chapter will start by giving an introduction to the composition of models and the graphics
pipeline used in real-time graphics to render the frames. The remaining sections detail components
used in Night Racer to achieve visually pleasing graphics, as it is one of the goals of this project.
These components are lighting, shadows, reflections, sky visualization, texturing, particles, and
post-processing effects which will be examined using a similar structure; this includes a short
background, the results in the game, motivations of the techniques chosen, and a discussion of
what could have been improved.

4.1 Models
Three-dimensional objects, known as models, are basic components creating the foundation of
computer graphics by simulating the physical entities of the real world. Models are built in a 3D
modeling application and then exported to be used in the game. The models consist of triangles
with mutual corners forming a mesh, which are stored in a sparse data structure. The models are
not volumetric, and instead they only represent what can be seen, which is the outer shell of the
object.

This section will present some of the theoretical concepts that are necessary in the development
of a 3D game and will be an aid in presenting the subsequent parts of this chapter.

4.1.1 Vertex Data

The corner of each triangle is called a vertex. In the simplest form, the vertex describes a point in
three-dimensional space, stored as a vector, but as represented in a programming language, the
data structure is very expandable, thus enabling any data to be tied to it. Among these data types
is the vertex normal, defining where the vertex is facing.

21
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4.1.2 3D Modeling Packages

The creation of models used in real-time applications are usually not performed in code, as writing
code is not a very intuitive way to create something aesthetic and are thus made in a whole other
process. Autodesk 3ds Max, Autodesk Maya, and Blender are examples 3D modeling packages
which are used when modeling assets to games and film.

4.2 Graphics Pipeline
The graphics pipeline describes the process of producing a two-dimensional image that can be
displayed on a screen from a three-dimensional scene, viewed from a virtual camera. When the
pipeline was first introduced nearly 40 years ago the functions were fixed and an integrated part
of the graphical processing unit (GPU) (Houston and Lefohn, 2011). Nearly a decade ago, the
programmable pipeline was introduced which allowed for much more control over the pipeline.
The programmable parts, known as shaders, are small programs with instructions to the GPU. It is
important to know how the graphics pipeline is constructed in order to understand how shaders
can be used. This section will describe what stages are included in the pipeline and the potential
of programmable shaders.

4.2.1 Stages of the Pipeline

In a pipeline, the process needs to be completed sequentially. The three stages of the graphics
pipeline are the application, geometry, and the rasterizer stages (Akenine-Möller et al., 2008), see
Figure 4.1.

Figure 4.1: The three stages of the graphics pipeline.

Application The application stage of the pipeline is executed on the CPU and is fully pro-
grammable. This part of the process is able to handle operations such as animation, collision
detection, and physics, but it is the developer’s responsibility to implement. The main objective
of the application stage is to determine what triangles, lines, or points (see Section 4.1) should
proceed to the next stage, the geometry stage. As the implementation is left to the developer, the
performance is dependent on the chosen algorithms.

Geometry The geometry stage is divided into sub-stages which handle different data opera-
tions from the application stage. This stage operates on the GPU, but can be controlled with
programmable shaders. The main operations in the geometry stage relevant to this thesis include
transforms, vertex shading, clipping, and screen mapping.

Initially, the incoming data is transformed from model space to view space via world space. Model
space is the coordinate system in which the object was modeled. World space is the coordinate
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system in which all objects are when they are transformed in the scene, and view space is the
coordinate system used when viewing the scene from the virtual camera.

For example, when a car model is positioned, scaled, and rotated in the world, the model’s coor-
dinates need to change from the local coordinates (model space) to the global coordinates (world
space). When the car is seen from the camera, the coordinates change to view space. These trans-
forms are calculated with matrix multiplications and are illustrated in Figure 4.2. The objects built
with the data may then be shaded by applying a shading model, covered in Section 4.3.4.

Figure 4.2: The scene as seen with world coordinates to the left and view coordinates to the right.
The camera is represented by the circle and the triangle is the area visible to the camera, called the
viewing frustum.

The next operation is clipping, which clips the scene so that only the parts visible to the camera are
sent to the next stage. Finally, the coordinates are transformed to be adjusted to the screen.

Rasterizer When all geometry operations have been performed, the rasterizer converts the scene
to colors for each pixel of the screen. The rasterizer traverses all triangles in the scene to find which
pixels overlap the current triangle. After the traversal, shading models which operates on a per-
pixel basis, can be applied to each pixel to compute the shaded color. If several triangles overlap
the same pixel on the screen, all pixels are stored and merged to a color buffer with a technique
known as the depth buffer algorithm to determine which pixels are in front and should thus be
visible. The content of the color buffer is finally displayed on the screen.

4.2.2 Shaders

The two programmable shaders, vertex shader and pixel shader, make it possible to control op-
erations in the graphics pipeline. The vertex shader is called once for each vertex in the scene,
allowing the developer to use per-vertex shading. The most important calculations in the vertex
shader are the transforms described in the geometry stage in Section 4.2.1. The output from this
shader is then interpolated to get input to the pixel shader which is called once for every pixel.
The pixel shader has the ability to decide which color each pixel should have based on the input
information such as texture coordinates and normals.
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4.3 Lighting
Lighting is an important part of making a three-dimensional scene look realistic, as light is essen-
tial for the ability to perceive shapes of objects. As such, lighting is one of the most researched
areas of computer graphics, but it is computationally expensive (Sanchez and Canton, 2003); thus,
simpler reflection models (or lighting models) are used to simulate real lighting. This section
will examine how lighting works and how that is applied to real-time graphics. Furthermore, the
lighting results of Night Racer will be evaluated in regards to aesthetics and performance.

4.3.1 The Rendering Equation

The light distribution in a scene can be described mathematically with the rendering equation (Im-
mel et al., 1986; Kajiya, 1986). In a point x, the reflected light Lr(x, ωo) in the outgoing direction
ωo is given by the following formula.

Lr(x, ωo) =

∫
Ωc

fx(x, ωi, ωo)L(ωi)cos(Nx, ωi)dωi

The reflected light depends on three different variables; the material’s bidirectional reflectance
distribution function (BRDF), first defined by Nicodemus (1965) describing the material’s reflec-
tive behavior, the amount of incoming light L(ωi) to a point x in the scene from a direction ωi,
and the cosine of the normal in the point x and the incoming light direction. These attributes are
integrated over all incoming directions ωi from the hemisphere around the point x.

The goal is to fulfill the rendering equation and to calculate the reflected light in every point, if
trying to achieve photo-realistic lighting. In real-time applications, the goal of photorealism is
hard to achieve due to the large amount of calculations involved, but simpler lighting models are
often used to approximate reality.

4.3.2 Light Sources

Light sources are entities which emit light. The light is typically in the visible range, meaning a
wavelength of about 380 nm to 780 nm (Bao and Hua, 2011); outside this range, light is not visible
to the human eye. In computer graphics, the simulated light is visible and is represented by a
color and a light value called irradiance.

The directional light is the easiest light source to simulate (Akenine-Möller et al., 2008). This type of
light source is best described as distant lights, like the sun, where the light beams are almost par-
allel to one another. These light sources are defined by a direction and an irradiance value.

Two other types of light sources are point lights and spotlights. These also have an irradiance
attribute, but they differ from the directional light as they have a falloff (where the light intensity
decreases). A point light can be defined by a position and radius, similar to a sphere, and the
spotlight is similar to the directional light but the light is only radiated within a cone with a
position and range.

4.3.3 Reflected Light

As stated in Section 4.3.1, there are several lighting models to approximate real lighting and one
of the simpler models is the Phong reflection model, introduced by Phong (1975). The following
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paragraphs describe this model with small variations.

The light in a scene is either emitted or reflected. If an object does not emit light like a light
source, it is reflective and can be described with three different components: ambient, diffuse, and
specular lights. These components contribute to the total light in different ways depending on the
material properties of the reflected object.

Ambient light, the first component, is the background light in the scene. When the light is reflected
in the scene, a small amount of light is contributed to every surface even if it is not exposed directly
to a light source, so called indirect light. This component is typically simulated by a constant color
value, see the leftmost circle in Figure 4.3.

Figure 4.3: The ambient, diffuse, and specular component, in order left to right, of the light sepa-
rated and then summed. The components are part of the Phong reflection model.

The second component, diffuse light, is the light which reflects equally in all directions from a
surface. It arises from the fact that the light is reflected on the surface but continues iteratively
beneath it and is reflected once again but with another angle, causing scattered light. The angle
of incidence is important when calculating the intensity of the diffuse light (Sanchez and Canton,
2003). The intensity follows Lambert’s cosine law, stating that it is proportional to the cosine of the
angle of incidence and the normal of the surface (Smith, 2007), as seen in Figure 4.4. That means
full intensity when the light is parallel with the normal and almost no intensity when the light is
perpendicular. A surface which follows this law is called Lambertian surface. The diffuse light is
one of the greatest contributor to the realism of the scene, and without diffuse light it is hard to
sense form of three-dimensional objects.

Figure 4.4: With diffuse light, the reflected light is scattered in all outgoing directions. The intensity
i, illustrated in gray, of the diffuse light is calculated with the cosine of the surface’s normal and
the angle of the reflected light ray. The closer to the normal the ray is, the higher the intensity. The
images are ordered by intensity, starting with highest intensity to the left.
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The third and final component is specular light; the light which is reflected on a surface without
scattering. Scattering means that the light comes from a single direction and is reflected in another,
in contrast to the ambient and diffuse light which are reflected in every direction. Specular light
causes the highlights in a scene, as illustrated in Figure 4.3.

4.3.4 Shading Models

Another type of model, shading models (not to be confused with shaders), describes how to
determine the shading of a scene. Shading is used to give depth to three-dimensional objects to
make it possible to perceive forms. Two categories of shading exists: flat and smooth shading. The
difference between the shading models is what data is used for the lighting model.

Flat shading is the easiest technique to implement, but it does not give realistic results on smooth
objects, as illustrated by Figure 4.5. Flat shading uses each surface’s normal and the light direction
to calculate how to shade the surface. Because the technique uses the same data for all points on
a surface it will be shaded in the same color.

To give better results to smooth objects, smooth shading can be used. Smooth shading interpo-
lates data to have more than one shade on each surface, thus creating an illusion of smoothness
(Sanchez and Canton, 2003). However, this is more computationally expensive than flat shading
due to the need for interpolation of data.

Gouraud (1971) first introduced the Gouraud shading. This shading calculates the lighting for each
vertex in a triangle by using the same technique described by flat shading, but needs to interpolate
the normals of the surrounding surfaces’ normals to calculate the vertex normal. The results are
then interpolated to calculate the shades of the surface’s points. As an effect of the interpolation
of the normals, Gouraud shading does not handle local specular highlights well.

Soon after the Gouraud shading was introduced, the Phong shading was described in the same
paper as the Phong reflection model (Phong, 1975). Phong shading is the most popular shading
technique and takes care of specular highlights better than Gouraud shading (Sanchez and Canton,
2003). This technique interpolates each surface vertices’ normals to calculate a normal to each
point on the surface. The lighting of each point is then calculated by using a lighting model, and
in contrast to Gouraud shading, the results are not interpolated. This technique gives the best
result to all kind of objects, including smooth surfaces (see Figure 4.5), but numerous calculations
are involved.

Figure 4.5: A comparison of shading models. Flat shading is shown on the left and Phong shading
on the right.
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4.3.5 Deferred Lighting

Deferred lighting, or pre-pass lighting, is a technique for handling multiple light sources. The
technique is used in many commercial games, for example in the Ubisoft game engine called
AnvilNext (Bertz, 2012). The naive technique to handle multiple light sources is to calculate the
lighting on each object by adding the effect of all light sources. This has the disadvantage that
numerous lighting calculations are performed even when the triangles are not visible (see the
depth buffer technique in Section 4.7.6). Deferred lighting eliminates these problems by deferring
the calculation of the light contribution until after the visibility check (Liang et al., 2000).

Quandt (2009) describes the technique in the following steps. First, geometry data from the scene
is rendered to a depth texture and a normal texture. The light sources are then calculated as
simple geometry objects (using a sphere for point lights) with the data from the textures, and
thus light only needs to be calculated for the visible pixels. The light contribution is rendered to
a light texture which is applied to the objects in the scene instead of calculating the light when
rendering.

4.3.6 Results

As one of the requirements for this project is that the game shall be visually pleasing, Phong
shading together with the Phong reflection model was implemented. This combination is almost
always used in a project of this kind because the results of the other combinations are not satisfying
enough.

Night Racer uses one directional light to simulate the moonlight, which changes color and intensity
to match the pulsating sky. The rest of the light sources in the game are point lights positioned
above the track. The point lights change colors to match a pattern where the lights appear to move
forward in the intended race direction as illustrated by Figure 4.6. At the start of each race, all
point lights start to visualize the count down by changing from red to green in four steps, see
Figure 4.7.

Figure 4.6: The point lights above the track indicating the intended direction of the race with the
change of color.
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(a) Step 1: Red lights. (b) Step 2: Orange lights.

(c) Step 3: Yellow lights. (d) Step 4: A green light, with the rest of
the lights in default mode.

Figure 4.7: The results of the countdown lights.

Early in the project, lighting on each object was calculated by adding the effects of all light sources
in the scene. This proved to be too complex and allowed up to approximately ten light sources
affecting the objects at the same time. The light sources were then sorted by distance to the car to
find the ten closest light sources to use. This worked when observing the car, but with the effect
that distant light sources were not contributing to the lighting of the scene, as illustrated by Figure
4.8a.

The solution to the problem with multiple lights was to implement deferred lighting. This tech-
nique, in combination with the high-end target hardware, allowed all objects in the scene to be
affected by up to about 200 light sources. Using this technique, all light sources are contribut-
ing to the lighting in the scene and the environment looks more realistic than before (see Figure
4.8b).

4.3.7 Discussion

The lighting used in Night Racer resulted in a satisfactory graphical effect after the switch to
deferred lighting as mentioned in the problem statement of this thesis. Many iterations of lighting
implementation were needed before the decision to use deferred lighting was made. However, this
approach is not without problems as the scene was needed to be rendered again with geometry
data, and thus performance was decreased. Deferred lighting is still performance-wise the best
solution of the techniques tested.
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(a) Due to the limit of ten light sources, the
lights closest to the car were used when
calculating the lighting. The circle shows
the intended position of the distant lights
which are not contributing.

(b) Deferred lighting allowed more light
sources to affect objects in the scene and
the distant light sources are now contribut-
ing.

Figure 4.8: The results of the deferred lighting.

Another solution to get even better performance can be to use a static approach where lighting is
calculated and saved to a texture once in the first frame, and on subsequent frames the information
in this texture can be used to light the objects. This works only if the light sources and the objects to
be lit are static and thus not move. However, even though all the lights in this game are static they
change their color every frame, thus static light textures would not work in this context.

Aesthetically, the point lights could have been a more integrated part of the environment rather
than only be positioned above the track to guide the player in the right direction, but the focus
has been more on the actual light effect rather than the light models themselves. An improvement
to the lighting of the scene would be to implement spotlights. These could be used to light up the
track when driving with the car’s headlights, but the lights already cover large parts of the terrain
and the track. Thus, the spotlights would not give the same effect as if the world was unlit.

4.4 Shadows
Imagine a world where objects do not interact with one another: mirrors would be empty, film
projectors would leave movie screens blank, and shadows would never be seen on the wall. This is
the world if only the most basic functionality of the graphics pipeline was used. To make realistic
looking graphics, programmers try to replicate these physical phenomena rather than using actual
physical formulas to represent the world, as that would require more computing resources than
is viable in today’s systems. There are many phenomena that have to be considered, commonly
gathered under the category Global Illumination or GI (Akenine-Möller et al., 2008).

The manner in which physical objects cast shadows on other objects is an example of a GI phe-
nomenon commonly implemented in real time graphics to provide a sense of depth to a scene by
indicated how objects are positioned in relation to each other (Akenine-Möller et al., 2008). This
section will detail the shadow techniques considered, and present the way shadows have been
implemented in the game.
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4.4.1 Shadow Simulation

Lighting plays a key part in the shadow phenomena, where it is the lack of light that fills in
the contour of the objects that block the light sources. However, calculating light as individual
rays as in the study of optics is unsuitable for most real-time graphics applications due to high
computational costs, which in turn forces programmers to use different algorithms for providing
shadows.

Shadow mapping One of these algorithms is shadow mapping. Shadows in a three-dimensional
scene calculated by the shadow mapping algorithm are evaluated in a set of steps, starting with
information gathering. The first step of the process consists of projecting the shadow caster’s
distance from the light source onto a texture called the shadow map, which is then provided to
the rendering stage. In the pixel shader of the rendering stage, the distance to the light from the
current pixel and the distance of the corresponding pixel on the shadow map is evaluated. If the
distance of the shadow map is lesser, the rendered pixel thus lies behind the pixel in the shadow
map, appearing in shadow.

Shadow volumes Another shadow technique is the shadow volume. Much like the shadow
mapping algorithm storing shadow data in a texture, the shadow volume constructs shadow
geometry by projecting the shadow caster’s vertices to create a volume behind the object. This
shadow volume is then used in the rendering stage by evaluating whether the point is inside it,
and if so, is covered in shadows.

4.4.2 Results

Shadows have been implemented in Night Racer (see Figure 4.9) and are calculated using the
shadow mapping algorithm. Due to the scenery and the numerous visual effects implemented, a
static approach is used instead of a dynamic one to conserve computing power. This means that
the shadow map is only calculated for the first frame, and then reused for all subsequent frames.
The light source used for the shadow map is the directional light implemented to simulate the
moon, and the shadow maps are calculated separately for each terrain segment (see Section 5.2)
so that the resolution of each shadow map segment can be of a higher than if a single map was
calculated for the entire terrain.

(a) A tree casting a shadow on the ground. (b) A simpler object casting a shadow.

Figure 4.9: The shadows in Night Racer.
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4.4.3 Discussion

The shadow algorithm was chosen because of the relatively easy implementation, but still achiev-
ing the goal of visually pleasing results. However, the algorithm was first implemented with
dynamic lighting in mind before the decision to use the static approach was made. The method
of working in iterations was important as the final approach proved to be a good optimization,
allowing a higher frame rate. On the other hand, the static approach is the reason why the car
does not cast shadows on the ground as the car is dynamic, but the decision was made that the
shadows of the car could be separated from the other shadows in the future.

The choice of a high shadow map resolution by calculating one shadow map for each terrain
segment allows for smoother shadows, compared to the jagged results of low resolution maps.
However, the splitting of shadow maps proved to be problematic when applying the calculated
shadows onto the car because of the movement between several terrain segments, making it hard
to find which segment’s shadow map should be used; for example, when the car transitions from
one segment to another, the shadows on the car need to be calculated from both the corresponding
shadow maps.

4.5 Reflections
Reflections help in making a scene look more photo-realistic, and are thus a natural part of a
visually pleasing game. This section examines environment maps used for reflections and describe
their two different formats (cube maps and sphere maps). Furthermore, a technique to generate
maps in real-time known as dynamic environment maps will be studied in order to evaluate
which techniques are most suitable for the purpose of this game.

Regarding the implementation of reflection, the implementation of planar reflections and reflec-
tions in curved surfaces differ. Reflections in curved surfaces can be implemented by generating
an environment map, and using the viewer’s angle to the object, texture lookups on the environ-
ment map are performed to see what should be reflected in the object. Planar reflections are often
implemented by rendering a copy of the object mirrored in the plane.

4.5.1 Environment Maps

Blinn and Newell (1976) first introduced the technique called environment mapping. An environ-
ment map contains information about the environment around the objects, and it is used when
calculating what a curved surface reflects. Without too much effort, an environment map can
make a scene more visually interesting (Llopis, 2009). It is important to note that the goal is not to
have physically accurate reflections, but rather to trick the eye to believe the reflections are real
(Andaur et al., 2002). Reflections are view-dependent, meaning a surface reflects differently when
looking at it in different directions. Each format of environment maps have specific mathematical
methods to calculate what is being reflected.

Cube maps is one of the formats of environment maps. A cube map is a texture where six faces
of a cube are represented to get a full environment representation, and can be seen in Figure 4.10.
The cube map generation is view-independent and can be generated once regardless of the view
direction. The first step to get the reflection from a cube map is to trace a ray from the camera to
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the surface. Then the reflected ray is calculated based on the incoming ray angle and the surface’s
normal according to the formula:

r = d− 2(d • n)n

where r is the reflection vector, d is the view direction, and n is the normal. Next, the largest
absolute component of the reflection vector determines which face the reflected ray hits. When
the target face is determined, the UV coordinates (see Section 4.7.1) are calculated by dividing the
other two components of r with the largest absolute component.

Figure 4.10: The six textures of a cube map used to calculate reflections.

Sphere maps is another format of environment maps. Sphere maps are textures representing
the environment by a circle where the center is representing the environment in the forward
direction and the edges in the backward direction (see Figure 4.11). Sphere mapping has one
major drawback that may explain why the format is, in general, not used (NVIDIA Corporation,
1999); the drawback is that, in contrast to cube maps, sphere maps are view-dependent and need
to to be regenerated every time the camera moves. Another drawback with sphere maps is that it
is harder to generate the textures compared to cube maps.

Despite all the disadvantages of sphere mapping, they could still prove to be useful as a fall back
in situations where cube mapping cannot be used. Cube mapping requires better hardware and it
may not always be available (NVIDIA Corporation, 1999).

4.5.2 Dynamic Environment Mapping
Standard environment maps are static, meaning they are generated once before the application
runs. In the case of cube maps, the result can be improved if the maps are generated in real-time.
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Figure 4.11: A sphere map where the center represents the front and the edges represent the back
of the sphere.

Every generation will need six renders, but allows objects to actually reflect the real environment
and not just an approximation generated outside the application. However, this approach is
computationally expensive for the graphics card, as each time the generation is performed, six
renders in addition to the default one are needed.

One way to improve the performance is to reduce the number of objects rendered in each of the
six renders, by performing stricter frustum culling (described in Section 5.1.4) and choosing to
exclude certain objects in the renders.

4.5.3 Results

In order to achieve visually pleasing graphics, reflections in the car were essential to get a look of
a bright and smooth surface. None of the other objects needed these reflections because they are
mostly organic non-reflective objects. Cube mapping was the implementation used in this project
because the targeting hardware supports it, thus no alternative was for consideration.

One goal with the reflections on the car was to implement dynamic environment map to always
reflect the actual surrounding environment on the surface. In the early development stage of the
game, the ability to generate environment maps dynamically was implemented, but the technique
requires powerful hardware to run smoothly. One solution to this problem, used in the final
version of the game, was to use the the cube map representing the sky as an environment map.
As seen in Figure 4.12, this proved to be sufficient enough, as there are no, or a small amount, of
objects blocking the sky for reflections.

4.5.4 Discussion

Reflections are a good way to achieve a shiny look. The results of the dynamic environment map-
ping were visually pleasing, but without advanced hardware, the performance was lacking. By
taking the cube map generated for the sky cube instead the performance was greatly improved.
The static approach was satisfying enough for the goal of this project and the dynamic environ-
ment maps were not needed in the game because of what the environment looks like. The method
of using XNA helped with cube maps as the framework contained support for saving and using
them efficiently.
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Figure 4.12: The sky is used as an environment map, and as a result, the moon and the stars are
reflected on the car.

If more real looking reflections were prioritized, the performance when generating the dynamic
environment map could have been improved. As described in Section 4.5.2, the six renders of the
dynamic environment maps can be simplified to take less rendering time. The environment map
could also have been generated less frequently and probably still get satisfying results.

Another improvement considered for implementation was to use several pre-generated cube
maps for different sections of the world, and thus having better representations of the actual
environment when driving. While improving the results per section, this technique would most
likely lead to transition problems when traveling to another section.

4.6 Skybox
In a scene which simulates the real world, there is often some kind of terrain model to represent
the ground, in addition to the other objects in the scene. This is one of the fundamental model
representations to form an earth-like appearance. If the scene is not enclosed by objects (such as
in a typical outdoor scene), all parts on the screen are not guaranteed to be covered and may show
up as empty, which is the color used for clearing the display between frames.

To ensure that no part of the screen remains empty in the outdoor scenes of the game, some
graphical entity can be used to envelop the world and then be used to cover up areas in which
no other object exists. This entity could be referred to the sky of the game world, since it will be
mostly visible on the top of the screen if the terrain and objects constitute the rest of the scene.
The sky, however, is not a single physical object and the player can not move behind it or see it
from the side, which makes the sky quite a unique part of the game.
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This section will describe the implementation of the sky in the game, and evaluate its efficiency
and visual appeal.

4.6.1 Sky Representation

Considering games often lack the presence of actual models in the sky, a simple simulated rep-
resentation is typically sufficient. This can be accomplished using an enclosing object centered
around the camera of the player, and does not change in appearance through rotation in relation
to the world space.

This representation is called the skybox, or skysphere since the object may be a box with a cubical
texture applied which could look similar to a sphere. Additionally, the skybox is rendered without
being affected by light sources, so that it is not perceived as just another physical object in the
scene. Since the sky needs to be in the far background of the scene, the rendering of the skybox is
performed as the first object in the scene with no depth write value, so that all the other objects
will be drawn on top of the sky.

4.6.2 Results

A skybox has been implemented in Night Racer, representing the purple sky envisioned for the
game. The model was exported from a 3D modeling package, but could very well be constructed
in code as it consists of eight vertices. The XNA standard class for texture cubes is used for
constructing the skybox from the six textures making up the sky. The skybox used in the game
is shown in Figure 4.13. However, what cannot be seen in the figure is that the sky is made to
constantly pulsate, providing a more dynamic visual appearance. The pulsation follows a sine
curve and adjusts the color intensity accordingly.

Figure 4.13: The skybox used in Night Racer.



CHAPTER 4. REAL-TIME GRAPHICS 36

4.6.3 Discussion

The modeling and implementation of the skybox used in Night Racer was a relatively easy task.
The method of using XNA was a benefit in the implementation, since it provided a standard class
which made the creation of the texture cube representing the sky of the game world much easier
as it is equivalent to loading six 2D textures.

The sky used in the game greatly affects the visual impact of the game, and having it pulsate pro-
vides the sense of movement which was central to the definition of ”visually pleasing” described
as a goal (see Section 1.1). The sky further assists in portraying the fantasy universe which is the
setting of the game.

4.7 Texturing
Texturing is a method to save data as a picture, every pixel corresponding to a data index. Data
is stored as a color, which means it can have up to 255 units of precision (8-bit) in three variables,
or four in the case of a picture with transparency. How the data stored in a texture is interpreted
is defined in the code, and can thus be used to describe any data collection, but is most often
associated with describing color.

Textures are applied to the surface of a model to describe it. A surface is not limited to a single
texture as they describe different characteristics, thus several textures can work in conjunction to
create the final look.

This section will focus on describing the texturing methods used to describe the surface of a model
and the terrain. Considering a texture can be interpreted in any given way in the code this section
will describe how the different types of textures are coded in this project.

4.7.1 Texture Mapping

As first pioneered by Catmull (1974), texture mapping is the act of applying the texture to the
model’s surface. A texture is stored in a two-dimensional space, and thus it needs to be re-
calculated into the three-dimensional space of the game. This is accomplished by projecting each
pixel of the texture, or texel, onto the model according to predefined texture coordinates generated
by the 3D modeling application. The texture coordinates are defined in UV space, representing
the X and Y axes of the texture.

4.7.2 Diffuse Texture

A diffuse texture is one of the most basic types of texturing, containing the color description of a
surface without any additional effects such as shadows or light reflections, see Figure 4.14. The
texture contains the pure, unaffected, color of the object as three components, red, green, and blue
(RGB).

4.7.3 Normal Map

Models in real-time graphics are often of a lower resolution than in other types of applications in
order to save computational power. As a consequence, there exists a loss of structural precision,
and in order to regain some of the loss a normal map can be used. A normal map describes
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Figure 4.14: A diffuse texture used in the game which shows the colors of the leaves for one of the
trees.

how a surface actually looks, by describing the normal of every point of the area, see Figure 4.15.
This allows the model to look more complex than it actually is, by using the new normals when
calculating how light affects the object, while still being a cheap method to compute.

Figure 4.15: A normal map used in the game. The difference in color determines the direction of
the normals, and thus the structure of the normally flat surface of the leaves.

A subgroup of the normal map is the bump map, which is a technique used for achieving a
more realistic surface on objects, such as a wrinkled cloth or a dirt road. The effect is achieved
by distorting the normals of the surface in pattern-like shapes, and thus creating a more lifelike
appearance.

4.7.4 Alpha Map

The alpha map is a texture that represents the transparency of an object. Common implementa-
tions include saving the transparency as grayscale images or in the assigned alpha layer of an
image with transparency. A black area is used to describe complete opaqueness, while a white
area is used to describe complete transparency, see Figure 4.16. Values in between are increasingly
more transparent going from black to white, and are blended together with the diffuse texture for
the area.
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Figure 4.16: An alpha map used in the game. The black area outlines what parts of the diffuse
texture should be visible in the game.

4.7.5 Texture Filtering

A texture’s resolution is often equivalent to the largest possible version of an object that is go-
ing to be shown in a game. A common occurrence, however, is that the object is further away,
which leads to the problem of the object the texture is mapped to occupies a smaller screen space
than the texture was created for. The consequence of this is that several texels occupy the same
pixel space, and the program needs to determine which texel to be used; filtering the available
texels or blending them together. The result is often subpar and graphical artifacts may become
apparent.

One of the solutions to the texture filtering problem is mipmaps, a commonly used technique to
optimize rendering. Mipmapping is based on the concept of storing several versions of the same
texture in the memory, each smaller than the previous (see Figure 4.17), and using the one best
suited for the current situation. Despite storing additional versions of every texture the memory
consumption is quite low, the increase is only about one third of the original size due to how the
sum of the division scales.

Figure 4.17: An example of a mipmapped diffuse texture. The smaller versions are tiled next to
each other, and because of how they are tiled it is easy to see how the algorithm scales.
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4.7.6 Depth Buffer

A depth value is generated for each pixel whenever an object is rendered. If another object were
to occupy the same space, the value of their depths are compared, if the new object is closer to the
camera it is chosen instead, while if it is further away it is discarded. The result is stored in a two
dimensional array, and can thus be considered a texture. This is called depth buffer, as referred to
in Sections 4.2.1 and 4.9.1.

4.7.7 Multitexturing

Multitexturing is not a texturing method, but a technique that can be utilized to create smoother
transitions between textures. Most models have a texture mapped to them, but terrain often has
a flexible texture determined by variables such as height in the world. This makes it possible
to have all terrain above a certain height be covered in snow. Another determiner could be the
slope of the terrain; a steep incline might be uncovered bare rock or dirt instead of a smooth grass
texture.

Each vertex thus has a specific texture calculated and assigned, and if two adjacent vertices have
different textures assigned to them there will be a very sharp edge between them (see Figure 4.18).
To remedy this multitexturing can be used. For every vertex a weighted value is assigned to each
texture, and on vertices where more than one texture carries a value the textures are blended
together, see Figure 4.19.

Figure 4.18: The terrain without the use of multitexturing. A sharp edge can be seen between the
mountain texture and the grass texture.

Figure 4.19: The terrain with the use of multitexturing. The edge between the two textures has
been smoothened, creating a better transition between materials.
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4.7.8 Results

Textures are an essential part of creating additional detail and depth to the game. Textures are at
the same time an efficient format, and basic textures are thus of a relatively high priority to imple-
ment. That said, high-resolution textures are time consuming to create and offer little additional
content in comparison to a lower resolution alternative. Since the game takes place in a low light
environment, the quality of texture is not as noticeable as in a more well lit environment. Thus
the quality of the diffuse textures has not been a high priority.

All objects in the game have at least a diffuse texture and a normal texture or bump map in order
to achieve additional depth. One-dimensional objects, such as the leaves on the trees also have an
alpha map to gain transparency where the object does not actually occupy any space, see Figure
4.20 for an example of these texture types. Mipmapping is automatically computed by the XNA
framework when a texture is added to the Content Pipeline, and thus does not need to be created
manually.

(a) Leaves with only a diffuse tex-
ture.

(b) Adding an alpha map to the
leaves make the areas that are not
leaves see-through.

(c) A normal map is added, result-
ing in the leaves gaining some ad-
ditional depth.

Figure 4.20: Different textures applied to the leaves of a tree.

4.7.9 Discussion

The implementation of texturing in Night Racer is satisfactory, and all of the textures needed to
provide a good game experience are included. A texturing type called specular map has not been
discussed due to the low light environment of the game. This was an intentional choice due to the
limited amount of additional detail it would provide for the game, but as a future implementation
it could be a worthwhile pursuit.

The most definitive improvement on the textures in Night Racer would be to create textures of a
higher resolution. An effort that would allow for not only additional details in the current game,
but also a potential for an alternative setting, such as a more well lit environment or a different
type of terrain without making the game look worse.
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4.8 Particles
Some objects are more difficult to visualize with the use of models, because their shapes are irreg-
ular and their appearance is often perceived as random (although there is a physical explanation).
This includes effects such as fire, smoke, water, and dust to name a few. Instead, particle systems
are used in these cases. The first use of a particle system was described by Reeves (1983), and it is
a collection of particles represented by a texture which are generated continuously. Each particle
has its own set of attributes and lifetime and is typically independent from the other particles in
the system. The particles can also be animated to get an effect such as pulsations. This section will
describe the effects fire, smoke clouds, rain, and fireflies implemented with particle systems in
this game and what context they were used.

4.8.1 Results

One of the goals with this project is to make the game visually pleasing, and one approach to that
is to implement a set of particle systems that make the game look more interesting. The particle
systems implemented in this game is presented below.

Fire The fire effect uses two particle systems, one for the fire and another for the smoke. The fire
particle system was made up of red colored textures spawned with a random velocity upwards to
simulate the rising flames. The additive blend state was used to give the effect of that it is hotter
in the middle of the fire, because all particles are adding up their colors to get a brighter result.
The smoke system is very similar but spawns gray particles with a bit higher velocity to get the
smoke above the fire. The fire system was used in this game to indicate checkpoints along the
race track, positioned in an arch over the track as illustrated by Figure 4.21. A detailed view of
the fire effect can be seen in Figure 4.23a.

Figure 4.21: Checkpoints indicated by an arch of fire.
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Smoke clouds An effect of large smoke clouds was implemented by a particle system with large
particles instead of the more common small particles. Gray smoke particles were spawned in an
area on the track to simulate fog with a velocity sideways to simulate wind. Figure 4.22 and Figure
4.23c illustrate the effect.

Figure 4.22: Smoke clouds along the track.

Rain Rain was implemented by spawning raindrops in the air at random heights. To limit the
amount of rain particles to use in the scene, particles are only spawned in an area around the car,
providing the appearance of rain everywhere. The particle texture is made up of a blue straight
line to simulate the motion blur when the rain falls down from the sky. See the final result in
Figure 4.23b.

Fireflies Fireflies were created by a particle system with small round yellow particles. These are
spawned around objects on the side of the road, such as the trees. New particles are given random
positions within a bounding cube and random velocity in any direction. The particle system uses
the bloom effect to simulate the bright lights (see Section 4.9.3). Figure 4.23d show the result of
the implementation.

4.8.2 Discussion

Overall, the particle systems created was looking good and the method used was satisfactory, but
some improvement could have been made to get closer to the goal of visually pleasing graphics.
For example, the firefly particles could be improved to look more like real fireflies rather than
glowing spheres. To improve even further, an animation of flapping wings could be added. Fur-
thermore, the rain particles could be more prominent in their appearance to get more intense rainy
weather. On the same track, the rain texture is drawn in a stripe form trying to fake motion blur
when the rain is falling. However, the results were inadequate when the particles fell towards
the player (such as when driving forward), due to no possibility of rotation in the particle system
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(a) The result of the fire effect. (b) The result of the rain effect.

(c) The result of the smoke cloud effect. (d) The result of the firefly effect.

Figure 4.23: The results of the particle system effects.

engine. With real motion blur instead, the particles could look more like stripes using a texture of
a round raindrop.

To support the improved particle systems, additional development of the particle system engine
would be needed; features such as different colors depending on the lifetime, non-uniform scaling,
and animations would augment the engine.

4.9 Post-processing Effects
Post-processing is a term to describe a collection of techniques used to improve the visual ap-
pearance of images after the rendering is complete. The techniques operate on a two-dimensional
image of the three-dimensional scene, but some of them require additional textures. This section
starts with introducing the basic method to enable post-processing, and then continues with three
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different effects implemented in Night Racer.

4.9.1 Render to Texture

Render to texture is a method for providing the means for post-processing. Instead of rendering
the scene to the screen directly, this method renders it to a texture and thus enable additions
of graphical effects to improve the visual appearance. After adding the effects to the texture,
this texture is rendered to the screen. The implementation details, however, are specific to each
graphics library.

The most common texture to render is the color texture representing the colors of the scene. The
color data is the base of every post-process technique, but additional data, such as depth and
normals, can be rendered to textures to provide the techniques with more possibilities.

4.9.2 Blur

Blur is a technique for smoothening out the texture and thus making it less sharp. A simple
approach to calculate blur is to take, for each pixel, the average of its neighboring pixels in the
texture. Montabone and Wickes (2009) states that this technique works better with smaller textures
because the number of neighboring pixels stays the same regardless of the size of the texture.

A variant of blur that gives better results than the simple approach is Gaussian blur (Montabone
and Wickes, 2009). The main idea is the same, but the neighboring pixels are instead weighted by
the Gaussian function (see Figure 4.24). Gaussian blur uses a radius which determines how many
pixels should affect the calculation. In order to get a full screen effect, the Gaussian blur process is
performed in both the horizontal and vertical direction, and the final result is the sum of the two
processes.

Figure 4.24: Example of a two-dimensional Gaussian function. This function determines how the
neighboring pixel values should be weighted.
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4.9.3 Bloom

Bloom is an effect for simulating how bright lights tend to spread their light on their surroundings
to get more photo-realistic images. The effect simulates how cameras perceive lights rather than
the human eye. The effect is prominent in Figure 4.25, where the characters look like they are
luminous.

Figure 4.25: An example of the bloom effect. The bright light spreads light on the surrounding
objects. Image courtesy of Blender Foundation.

Kalogirou (2006) describes the implementation of bloom in four steps:

1. Rescale the original texture down to a reasonable size.

2. Render the bright areas of the scene into a texture. This can be done by using a threshold
value and only rendering the areas where the light is brighter than the threshold.

3. Blur the created texture to smooth out the bright areas.

4. Combine the original texture with the new texture by performing linear interpolation be-
tween them.

4.9.4 Motion Blur

Motion blur is an effect used for evoking a sense of speed by blurring parts of the screen. Motion
blur is important in games where something moves really fast, and thus, especially in racing
games. Though, if implemented poorly or overused, this effect can have negative consequences
for players, such as nausea (Li, 2011).

The effect tries to smooth out the rendered scene by taking the average value of several frames
for each pixel. In order to calculate where the pixel was in the previous frames, the velocity of
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that pixel needs to be determined. Several techniques to find out the velocity exist, and they
often include additional rendering that may cause some applications to run more slowly (Rosado,
2008).

Rosado (2008) describes another technique in the book GPU Gems 3, which uses the depth buffer
to calculate the per-pixel velocity. This enables motion blur to be implemented as a post-process
effect. The depth buffer is first used to find the current 3D position of each pixel, and then the
previous frame’s view and projection matrices (see Section 4.2.1) are used to calculate each pixel’s
3D position in the previous frame. With both of these positions available, the velocity is the
difference between them.

4.9.5 Results

XNA provides methods for implementing post-processing effects easily, and thus making it easy
to adopt well-known techniques to improve the visual appearance of the game. The effects were
implemented with instructions to GPU through pixel shaders (see Section 4.2.1), with additional
XNA method calls to render the different textures used.

The effect blur was implemented in the game with the simple method that calculates the average
of all pixels surrounding the current pixel. The result is shown in Figure 4.26a, and as the effect was
not as prominent as thought, Gaussian blur was implemented instead. The radius and number
of samples were tweaked to give an even better result. A comparison between the different
approaches is visualized in Figure 4.26. Blur was only used in this game as a helper effect for the
bloom effect.

(a) The simple approach did not give suffi-
cient result.

(b) Gaussian blur gave much better result.

Figure 4.26: A comparison between the two blur methods (blur is not used in this context in the
game).

When implementing the bloom effect, a variant of the implementation described in Section 4.9.3
was used. The bright areas of the scene are rendered to a texture which is then downscaled and
blurred with Gaussian blur to get the bleeding effect. The texture combined with the original
image makes up the final result, and the process can be seen in Figure 4.27. The result looks
convincing enough to feel that the lights are bright instead of just flat and dull. The bloom effect in
Night Racer can be found mainly on the point lights and the particle systems like the fireflies, but
everything that is bright in the scene will be affected by bloom, as illustrated by Figure 4.28.
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(a) The scene without bloom. (b) Texture with the bright areas of the
scene.

(c) The texture downscaled and blurred. (d) The final result when combining the
original image with the bloom texture.

Figure 4.27: The results of the bloom process.

Figure 4.28: Bloom effect on the point lights and the fireflies in the tree.

Motion blur was implemented using the process described by Rosado (2008), summarized in
Section 4.9.4. This technique proved to be efficient, as it is a post-process effect so no additional
rendering other than a depth texture was required, but the result of the effect is not entirely
satisfactory. The effect appeared as several distinct copies of the scene rendered in a direction, but
when decreasing the distance between the copies, and instead increasing the number of copies,
the results were sufficient. Motion blur was only used on the sides of the screen when driving to
still get a clear appearance of the car. The final result can be seen in Figure 4.29.
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Figure 4.29: Motion blur seen on the sides of the screen. The effect appears as several copies of
the scene mixed together to get the feeling of additional speed.

4.9.6 Discussion

The post-process effects implemented improved the graphics slightly, but they did not dramati-
cally change the look. However, the goal of choosing visually pleasing graphical techniques was
still met. If the effects were missing though, it would be noticeable as they can be found in the real
life. If, for example, bloom was not implemented, the point lights would not look like real lights;
they would instead appear as regular smooth-shaded spheres.

If the project was repeated, another technique for the motion blur effect would probably be used.
The post-processing technique used in the game was easy to implement, but gave limiting results.
A technique which uses multiple renders would most likely give better results and should thus
be used if the hardware supports it. Another approach worth trying is to use Gaussian blur to mix
the copies in the motion blur technique to get smoother and blurrier results.



5
Optimization

As the size of a game increases, it will also require additional time to compute all the necessary
calculations in each game tick. In order to minimize this time, optimizations can be a valuable time
investment. Optimization may thus help to solve the problem of using the computer’s processing
power effectively by limiting the number of objects that need to be considered each update, or by
simply making the used algorithms more efficient.

A large part of this chapter will be dedicated to rendering optimization, as this project is focused
on creating a visually pleasing game. The optimization of the terrain, which is closely related to
how rendering optimization is utilized, will also be covered.

5.1 Rendering Optimization
One of the oldest problems encountered in computer graphics is the problem of visibility (Bittner
and Wonka, 2003), and by extension, the optimization of rendering. A scene often contains far
more objects than what is currently visible to the camera. The solution to this problem is to
accurately and efficiently determine what objects are currently in view of the player, upon which
the remaining information can be discarded from the render cycle. This process is referred to as
culling.

This section will present an assortment of available methods which offer several different solutions
to the problem (of which all can be used in conjunction with each other) and outline the details
behind their idea and usage. The first method to be covered is used to determine on what scale the
detail of an object needs to be to still read as the same object at various distances. The remaining
methods discussed are different options for implementation of culling, starting with backface,
occlusion, and finally viewing frustum culling.

5.1.1 Level of Detail

As first explored by Clark (1976), an object at a distance does not need to be as complex as an
object that is closer to the viewpoint; both objects will appear to have the same shape even if the
object further away has far fewer polygons. The level of detail (LOD) of the object is determined
by the distance, and this is the origin of the name.

49
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In its most basic form, several models representing the same object are created, and distance is
used to determine which level of detail the model needs to be used in order to accomplish more
optimized rendering (Danovaro et al., 2006), see Figure 5.1.

Figure 5.1: An example of level of detail optimization. Each circle represents a discrete distance
from the viewer at the center, and the model is simplified as the distance increases. The green
shapes represent a possible version of the same object at the different distances, each using a
simpler shape than the previous.

5.1.2 Backface Culling

Backface culling is the concept of determining which polygons are currently visible to the player,
which is easily accomplished by observing the normal of the polygon (Lamberta, 2011). The
normal of a polygon is equivalent to the direction it is facing, and thus a polygon which is currently
facing in the direction of the player will have a normal pointing towards the current viewpoint.
All other polygons are then ignored during rendering, as they are obscured by the side of the
object actually facing the player.

The algorithm, due to its nature has the potential to roughly halve the amount of polygons needed
to be rendered, but is subject to several limitations (Blinn, 1993). First and foremost, the object
needs to be completely opaque; a model with, at least, partial transparency are by their very nature
see-through. The polygons facing away from the player are therefore still visible, even though
they are not facing towards the player. The object’s polygons also need to form a complete shell
where there should be no holes or openings in the surface, as these perforations create the same
problem as transparency, the inside of the object, and thus the backside of the polygons might still
be visible to the player.

5.1.3 Occlusion Culling

The concept behind occlusion culling is that if an object is obscured by an object closer to the
view point, it should not be rendered as it is not visible from that vantage point (Frahling and
Krokowski, 2005). The process of occlusion culling is thus to determine which objects are visible
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to the player, and, in more advanced algorithms, what parts of said objects are visible, see Figure
5.2.

Figure 5.2: An example of occlusion culling. The blue area is the visible screenspace, with the
viewer located at the bottom of the image. The green shapes are visible to the viewer and the
yellow shapes are hidden (or occluded) by the objects in front of them.

5.1.4 Viewing Frustum Culling

A frustum is the geometrical shape received when a solid, such as a cone or pyramid, is cut by
two parallel planes. The viewing frustum is the pyramid shaped frustum equivalent to the visible
screen space. Viewing frustum culling is thus the process of eliminating polygons that are located
outside of the projected screen space (Bittner and Wonka, 2003). This is accomplished by checking
which objects and polygons intersect with the current viewing frustum, see Figure 5.3.

Figure 5.3: An example of frustum culling. The blue area is the viewing frustum. The green shapes
are at least partially inside the frustum and are thus included in rendering. The red shapes are
outside of the current viewing frustum and are ignored during rendering.
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5.2 Results
The implemented rendering optimizations have led to better performance and an increase in the
game’s framerate, and have thus been a valuable pursuit. However, only two of the methods
outlined above have been implemented, which is due to the complexity of the algorithms. The
first of the two is backface culling, a relatively simple algorithm that is included in the XNA
framework. The second optimization is viewing frustum culling, of which a simple version has
been created. The bounding box of each object (which is a cube containing the whole object) is
examined whether it intersects with the viewing frustum or not, and if it occupies a part of the
screen it is considered during rendering.

Occlusion culling has not been implemented in the game due to the difficulty of the algorithms
involved, the choice was instead made to focus on other aspects of the game. The inclusion of the
level of detail algorithm was discussed and the models were tested if they could be simplified
in an acceptable manner with the 3D modeling program. As the result of the simplification was
not deemed to be of an acceptable level and all models were gained from outside sources, as well
as the line of sight in the game being fairly limited by the small scale terrain, it was decided that
level of detail would not be implemented.

Another optimization implemented in the project is used along with rendering of the terrain into
the world. Originally, the terrain consisted of a single model, which created a problem when it was
subjected to the simple, but quick, frustum culling algorithm used in this project. The problem
was that since a part of the terrain was always inside of the viewing frustum the entire terrain
was considered as a possible candidate for rendering. The solution was to divide the terrain into
several subsections, where each subsection is its own model. This lead to a noticeable increase in
performance as a large part of the terrain is no longer considered during rendering.

5.3 Discussion
As optimization is an important part of making the game playable for a majority of the potential
userbase, it is a valuable part of any project. As is apparent from the results, the method of using
the XNA framework has been very useful because of the built-in implementations of the culling al-
gorithms. While the concrete optimizations applied in this project are quite few, numerous smaller
optimizations have been applied continuously on individual algorithms used in the project.

Despite this, additional optimizations would be a very valuable area of development if further
development of the game is considered. In such a case, the rendering optimizations discussed in
this chapter may be of specific interest due to their large effect on performance. Furthermore, to
develop a the game into a more visually pleasing one, the performance gains by the algorithms
implemented allow for even more effects to be considered in the future.



6
Audio

Sound surrounds us at all times; even when asleep there are several sounds that go unnoticed:
the running of water in plumbing and radiators, the low buzz of the refrigerator or the occasional
noise of nightly traffic. All these sounds are taken for granted, and the same is often true in video
games. As such, the audio section in a small project can sometimes be seen as a burden to be
fulfilled, when it instead should be seen as an asset.

Research has shown that sound can be used to influence visual perception; sound of good quality
can be used to hide temporary drops in visual performance such as a decrease in framerate
(Hulusic et al., 2011), or even improve the perceived visual quality (Simpson, 2000a). Audio is
therefore an integral part in creating a believable game experience by making the game feel alive.
A well made audial experience thus enhances the feeling of motion and makes the player feel
immersed.

This chapter will cover how the three-dimensional nature of the game influences the audio of
the game and what the alternatives are for implementing sound in an XNA project. The problem
of providing an immersive gameplay experience by adding sounds appropriately will also be
examined.

6.1 3D Positional Effects
Physics and the visual quality in video games are growing ever more realistic. Physics calculations
can be done in real-time, but audio is still represented by pre-recorded samples. Sound as well is
just a physical phenomenon, and the capability to accurately synthesize and calculate the sounds
and audial abilities of an area has recently been explored (Raghuvanshi et al., 2007), but it requires
immense amounts of computational power.

As the audio of a game is represented by samples, it can therefore become quite one-dimensional.
However, the gains from accurately calculating the physical phenomena of 3D sound can be
regained in a satisfactory fashion from far simpler methods. Most available sound libraries have
the capabilities of adjusting both volume and pitch, which is two of the key variables to adjust in
order to create a sound experience that is perceived as real.
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The change in volume is used to make sounds diminish as they move further away from the
player, which is easily applicable in a racing game. The volume can either be changed manually,
or by using the methods available in the sound library that calculate the distance between the
source and the listener and adjust the volume accordingly. These methods will also determine the
position of the source of a sound in the game world, by changing the amount of sound emanating
from each speaker (panning) in order to better simulate the direction in the game world the sound
is coming from. These two techniques can thus be applied together to play sounds in a manner
able to model their distance as well as direction, which is sufficient for simulating positioned
sounds in a 3D world.

An additional effect that occurs when moving is the Doppler effect, which is the result when either
the listener or the source of a sound is moving, which is an occurrence that is quite common in
a racing game. An example of this is the sound of an ambulance’s siren; when the ambulance is
moving towards the listener the sound is different from when it is moving away. This is due to
the frequency becoming offset from the velocity of the source; the frequency is increased when it
moves towards the listeners, and decreased when it moves away.

6.2 Sound Libraries
There are several alternative sound libraries available for C#, some of which require a license to use
if the goal of the project is a commercial game, such as FMOD. These licenses are an unnecessary
expense, and since the goal of the game is merely to have basic functionality fit for a technical
demonstration. The choice has thus been to evaluate the free alternatives available, and to narrow
down the selection further it seemed prudent to use the alternatives that are either native or well
integrated to XNA. The two remaining alternatives are then Microsoft’s XACT, which is a high
level sound library and authoring tool, and the XNA Content Pipeline (Microsoft, 2013b).

The XNA Content Pipeline has the advantage of being able to play MP3 files in addition to the
formats supported by both alternatives, but carries with it the disadvantage of only being able to
adjust volume during runtime. Each sound also needs to be managed and stored individually in
the code, which becomes rather cumbersome if there are a large amount of sounds.

XACT only offers its full functionality when using WAVE files, but XACT has several advantages
in its favor. It not only gives the ability to adjust volume during runtime, but also allows the
user to change pitch and apply 3D positional effects. One of the key features of XACT is the
ability to build wavebanks and soundbanks. The former is, as implied by the name, a collection of
sound files of the WAVE format, making management easier. The soundbank contains instructions
known as cues for how to access the wavebank, and how a single sound is changed when 3D
effects are applied to it. These banks are presented in a separate management application, seen in
Figure 6.1.

6.3 Results
Due to the similarities in the scope of the project and the capabilities of XACT, it was elected
to be used for the sound implementation. It offers a high level of customization of sounds for a
relatively small investment of time.

Since none of the team members had any actual experience working with sound creation or
recording, as well as limited access to decent recording equipment, the choice was made to use
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Figure 6.1: The soundbank view in XACT. The top half of the interface is the sound collection,
each sound has a probability (bottom-right) to be played when a cue is played in the game. The
cues are located at the bottom of the interface, each cue has its own set of probabilities.

crowd-sourcing websites dedicated to sharing free sound effects. Examples of such sites that
were used are freesounds.org, findsounds.com and soundbible.com. Some of the sound assets
have then been edited, where unwanted parts have been removed and seamless looping has been
ensured.

A large wavebank has been created and is utilized in the game, however, not all of the available
assets are used yet. The most developed area is the ambient sounds as they help the most with
creating the atmosphere for Night Racer’s fantasy theme. A general forest ambient was decided to
be well associated with the fantasy setting, and thus sounds such as crickets and various bird calls
have been woven together to create the basis for the audial scene. To create a more living world,
night sounds such as a wolf’s howl or an owl’s hoot are played at random intervals. Additional
ambient sounds include falling rain, which varies slightly in sound intensity as to not create a flat
effect.

The fires in the checkpoint arches (see Section 4.8) are currently the only sound-emitting objects
subject to the Doppler effect. Among the other sounds that would benefit from this effect are the
engine sounds of the opponents.



CHAPTER 6. AUDIO 56

6.4 Discussion
In an optimization scenario where the available memory is limited, XACT suffers from the file
type limitation due to the uncompressed nature of the WAVE format. In particular, long sounds
such as background music are an issue. As an alternative, the XNA Content Pipeline could have
been utilized as it has full support for additional filetypes, such as MP3. Because of the need to
create additional interfaces to easily interact with the systems of such a solution, the choice of
only using XACT is however well justified. XACT does have an alternative to set a wavebank to
streaming mode, which allows the files to be streamed from the harddrive into the smemory as
more of it is needed, vastly reducing the memory footprint. However, this is not used in the game,
but is a possible future optimization.

While the sound effects currently in use do provide a more immersive gaming experience, the
game experience could be improved by acquiring better sound sources. The current sounds are
far from optimal and do not fulfill the predetermined level of quality the project is aiming to
achieve. This is because none of the effects used are customized for the project, instead available
sounds have been edited with results of varying quality. In particular, good engine sounds were
incredibly hard to find and are thus not part of the game, but is very central to the experience of a
racing game. New sounds could be obtained by either utilizing services that allow access to their
databases for a licensing fee, or by acquiring high quality sound recording equipment in order to
record sounds.



7
Multiplayer and Network

All types of games need to provide some form of challenge for the player to overcome. When
designing games, the designers need to decide what challenge to focus on. These challenges may
take several different forms, among them are artificial intelligence opponents and non-physical
opponents such as time or hurdles, but also other players through multiplayer game modes.

Competitiveness is part of human nature, and multiplayer gaming is a relatively simple way
of providing a forum for competition. Furthermore, as network connectivity increases around
the world, online gaming has become a major selling-point for games (Smed, 2008) and research
has shown that the majority of young gamers engage in online gaming (Lenhart et al., 2008).
Therefore, including an online multiplayer mode in a video game that is to be commercially
viable is of obvious importance.

This chapter will examine techniques for implementing a multiplayer mode in Night Racer. How-
ever, multiplayer games can take on many different shapes, and as such, different types of multi-
player game modes that have been considered will be presented. The type of multiplayer game-
play, network architecture, and programming framework that was decided upon for the project
are then examined in detail, followed by a discussion of the results. Furthermore, approaches for
combating latency issues, so that the game can provide a smooth gameplay experience, will be
presented and evaluated.

7.1 Offline Multiplayer
A basic multiplayer game mode is where two or more players play together on the same device. In
this case, both players are shown on the same screen, sometimes splitting the screen into different
areas if not all players can be shown in the same screenspace. Players use individual controls
connected to the same device which control their respective characters.

Non-networked multiplayer games provide some advantages over networked games, such as
being able to accommodate virtually latency-free communication between player. Since Night
Racer cannot realistically show several players with the same camera while keeping the gameplay
the same, splitscreen would need to be implemented to provide offline multiplayer gaming in the
game. Splitscreen game modes require the game to be rendered one time for each camera, which
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makes splitscreen very taxing for a computer, and for a graphically intense game such as Night
Racer, it makes it unrealistically so.

7.2 Online Multiplayer
Online (or “networked”) multiplayer allows players to compete against each other from different
computers connected through a network, either a local network (such as a home router) or a larger
one (such as the Internet). Connecting players over a local area network or over a larger network
is logically equivalent, since both examples work by connecting to a remote computer with an IP
address, distance between the two notwithstanding. However, an implementation for local area
network gaming might not work very well over the Internet, since such connections introduce
data exchange issues, usually caused by congested connections between players (Coulouris et al.,
2012).

7.3 Network Architecture
The architecture of a network refers to how the hosts in the network are connected to each other. In
terms of networked games, there are two different network architectures to consider, as outlined
below.

7.3.1 Client-server

A client-server network consists of a set of hosts (clients) and one centralized host (server). Clients
communicate via the server and never directly with other clients. Clients run identical client
applications which distribute and receive data from the separate server application that is running
on the server (Kurose and Ross, 2010). The topology is visualized in Figure 7.1.

Figure 7.1: Visualization of an example client-server network.

Among the primary advantages of a client-server architecture is the possibility of having a single
authoritative host, the authoritative server (Gambetta, 2010), since all data must pass through the
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server. In such implementations, the client-side player does not necessarily decide its own position,
which may be decided by sending a request to move a number of units to the server, where upon
the server responds by stating the absolute position in which the player can move to. In less naive
implementations, the position of a client-side player may instead be corrected by the server. An
authoritative server can thus allow for centralized anti-cheating measures, in a trade-off with
increasing server complexity.

7.3.2 Peer-to-Peer

In a peer-to-peer network, all hosts (peers) communicate directly with each other (Kurose and
Ross, 2010). A host wishing to connect to the peer-to-peer network connects to one of the peers
already in the network, who then distributes a list of available peers to the newly connected host,
as well as to the previously connected peers. At this point, all connected peers can exchange
data directly with one another, without having to go through a central server. This topology is
visualized in Figure 7.2.

Figure 7.2: Visualization of an example peer-to-peer network.

A peer-to-peer network allows data to be passed directly to each player instead of requiring data
to be sent through a central server, which can reduce the connection latency since p ∗ r packets
(where p is the number of players and r is the rate of packets per second) being sent to and from
the server every second may present a bottleneck. However, a peer-to-peer architecture provides
additional complexity in implementation (Simpson, 2000b) and state synchronization (Fiedler,
2010).

7.4 Frameworks
There are numerous ways to implement network functionality in a game made with XNA. The
most basic choice is socket programming using the System.Net library which is a part of the .NET
Framework. This, however, involves low-level network programming which is not ideal for Night
Racer since time could be spent on developing a more complete network game. Such low-level
detail is already implemented in other libraries, some of which will be examined below.
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7.4.1 XNA Networking

The Microsoft.Xna.Framework.Net library is part of the XNA framework and hides some of the low-
level details previously discussed. It is specially tailored for network games, and thus has features
such as lobbies, scoreboards and player management. In XNA games developed for Windows, it
does not allow for players outside the same local network to connect to each other without Games
for Windows Live. Developing for Games for Windows Live also requires a XNA Creators Club
account (Microsoft, 2013a).

7.4.2 Lidgren

Lidgren networking library generation 3 is an open-source third-party library for providing network
functionality in the .NET Framework. It is not specifically designed for networked gaming, but
does provide a higher-level API for connecting to a server or peers and exchanging data messages,
coupled with efficient use of resources (Lidgren, 2011). Furthermore, it has been used to implement
multiplayer functionality in games, such as AI War (Park, 2010).

7.5 Combating Latency
Latency is defined as the time a message takes from the sender to the receiver over a network, and
is a very important part of network games where the aim is that the state of a game should always
be practically equal for all players connected. A congested network will present higher latencies
(Coulouris et al., 2012), and it is therefore very important to find ways of alleviating congestion.
This section aims to detail three different approaches to combat latency: sending smaller amounts
of data, sending data less often, and simulating smooth gameplay when no data is available.

7.5.1 Identifying Player Data

When dealing with sending data over networks, every single bit counts. Networks can often be
overwhelmed by data, and the less data that is sent, the less likely it is for such problems to arise.
Online action games suffer from this problem as they typically need to deal with very rapid data
exchanges, as they (in the case of Night Racer) update the screen 60 times a second, and therefore
would preferably need new player data from all players at the same rate. As such, in designing
network code for video games, it is very important to decide exactly what information the players
need to properly display their co-players on their screens (Simpson, 2000a).

With an ideal connection, it would be possible to send the whole object representing the car on
the player side, information of the surrounding terrain as well as various details from the physics
engines. Such data would make it possible to react more consistently to complex situations such as
collisions between players. However, that would entail several players sending roughly hundreds
of bytes 60 times a second, which would put considerably more strain on the network, as well as
making the server code vastly more complex (Fiedler, 2006).

7.5.2 Simulating Smooth Gameplay

However conservatively the exchanged player data is chosen, a latency-free connection can never
be guaranteed since networks can become unexpectedly congested (Kurose and Ross, 2010). It
is therefore difficult to provide consistently smooth gameplay in such situations. Furthermore, if
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algorithms can facilitate sending less than a full 60 packages per second in the game, congestion
could be prevented in the first place. This following text will describe three considered techniques
for simulating smoothness in gameplay when sufficient data is unavailable.

Interpolation Interpolation regards the latest messages received from the server and creates in-
terpolated messages in between them, simulating a full 60 messages per second (Valve Developer
Community, 2012). For example, if a client receives 30 messages per second with the position of a
player, it will create one interpolated position in between positions Pn and Pn−1, where n is the
number of the latest received message:

Pn−0.5 = lerp(Pn−1, Pn)

where lerp is the linear interpolation function. The rendering of the moving player on the screen
of the client is delayed twice the time between server messages, which makes the movement of
the player smooth even if one message is lost; if more than one consecutive message is lost, the
client will experience choppy gameplay (Valve Developer Community, 2012). This interpolation
delay can make the game feel unresponsive to some degree since the player does not see the latest
game state on the screen, and the interpolation of player positions can make rapid movements
seem flattened (Bernier, 2001).

Extrapolation Extrapolation can be used when a new frame should be rendered, but no new
player position has been received from the server. Instead of simply having the player keep their
position (which would make the player’s movements seem jerky), the client can extrapolate the
player’s new position based on the movement in the previous frames (Bernier, 2001). This uses
the velocity (and acceleration, if possible) of the player, which is applied to the previous position
Pn, producing an extrapolated position Pn+1. When an updated player position is received from
the server, the client can correct the player accordingly.

Dead reckoning Using an agreed-upon extrapolation algorithm, dead reckoning as described
by the IEEE Standards Association (2012) is used to simulate player positions when no new
position has been received from the network (see extrapolation). However, a dead reckoning
solution does not use a fixed number of position updates sent per second, but rather a distance
threshold that each client keeps track of. This threshold is reached when the player has diverged
a fixed distance from its position in the (by extrapolation) simulated car based on their previous
player position message sent to the server. When reached, the client sends a new player position
message to the server which is then distributed to the other clients. Thus, player positions are
only distributed when they are actually needed, and if a player keeps well to the path of the
extrapolation algorithm, that may rarely if ever happen, and the consequence is that network
traffic can be kept to a minimum. This, however, makes player position updates less deterministic
and implementation more complex.

7.6 Results
A fully functioning multiplayer mode has been implemented in Night Racer, seen in Figure 7.3. It
is playable by a maximum of four players in the form of a simple racetrack mode, where the first
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player passing the goal line of the last lap wins. A multiplayer game is started by connecting to
a server via the main menu, upon which the game lobby is presented (see Figure 7.4). Pressing
the start button will take the player to the gameplay view, and when all players connected to the
server have started the game, the race countdown commences.

Figure 7.3: Two cars competing in the multiplayer mode.

Figure 7.4: The lobby screen, showing all players connected to the game server.
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Night Racer uses a client-server architecture with a non-authoritative server, which means that
the server essentially receives messages from the players, and distributes them to all other play-
ers directly after appending an identifier of the sender. This keeps the complexity of the server
software to a minimum since it contains no game logic, while allowing extension of the server
with anti-cheating measures at a later date. At this point in time, no network security is provided,
which makes it possible for resourceful players to cheat, but this is made less effective since the
only data that is being exchanged is the absolute positions of the player, and the winner of a race is
calculated client-side. Both the client-side network code and the server software uses the Lidgren
library, which allowed for further focus on high-level architectural programming and provided a
rather simple API.

The network game is divided into several states, where the first state (Lobby) is where information
about players is exchanged, followed by the countdown state where players are notified when
they may start moving, leading to the race state, which is concluded by the game over state, where
all statistics are calculated on the client-side to be presented after the race. The race state is of
particular interest, since it is only at that point player positions must be exchanged, which is the
only type of message that needs to be delivered consistently and quickly and are sent in such
frequency that they may cause latency issues.

For Night Racer, the data that needs to be sent for each player has been identified, and is presented
in Table 7.1. The first byte indicates which type of message it is, and informs the receiving client
how the rest of the message should be parsed. In the case of a player data message (or ”PlayerPos”
as they are named in the code), it is encoded as 0x00. The solution used in Night Racer opts
to distribute player positions from the server as individual messages, as opposed to sending
positions of all the players in the same message. This choice was made because the gameplay will
seem more natural if some of the players move, instead of none, in case of network congestion.
The player positions in the 3D space as well as the rotation are enough to represent the player
accurately on a game level, and are sent as floating point numbers with 32-bit precision, as they
are represented in the Night Racer graphics engine.

Table 7.1: The bit fields of a PlayerPos message, as used in Night Racer.

Field name Data type Size (bits)
MessageType Byte 8
PlayerID Byte 8
Player position X Float 32
Player position Y Float 32
Player position Z Float 32
Player rotation Float 32
Velocity Float 32

As the table indicates, the choice was made to not send any physics engine data (such as collision
detection) in the data packets to conserve bandwidth. This means that all physics decisions are
made on each client’s side rather than on the server, which could in rare edge cases produce
rather amusing unexpected behaviors (such as when one car detects a collision, but the other
car does not). However, the current iteration of the game does not feature collision detection,
which makes these issues void. Further measures could be taken to conserve bandwidth, such as
abbreviating the 32-bit values to a 16-bit data type (such as short), but it was determined that the



CHAPTER 7. MULTIPLAYER AND NETWORK 64

loss of precision is unlikely to make up for the minor gain in bandwidth.

For simulating smooth gameplay, an adapted version of the dead reckoning technique described
by Aronson (1997) is used with a linear extrapolation algorithm. The choice to use dead reckoning
was made because it provides both enforceable player position accuracy and little network traffic.
The downside is that dead reckoning is comparatively complex to implement, but using a simpler
extrapolation algorithm makes implementation more time efficient. Changing the threshold (that
is, the maximum allowable distance between the player car and the simulated car before a new
player position message is sent) allowing for finding a balance between network congestion and
smoothness of the gameplay. This technique has been found to produce satisfactory results, as it
allows for smooth gameplay while keeping the network traffic quite low.

7.7 Discussion
The point of the techniques applied in Night Racer is to hide latency and packet loss, and as such, a
good implementation should mean that the results are invisible to the players. However, there are
some ways of simulating packet loss and latency built into the Lidgren library. Testing indicates
that a packet loss of 5 to 10 percent is acceptable from a subjective impression, but higher loss
probabilities make the movements of players seem too jerky. A non-simulated example of the
impressive efficiency of the dead reckoning implementation was experienced when a client with
a very low frame-rate was connected to a server. The movements of that client was then observed
by a high frame-rate client, where the movements appeared almost entirely smooth even though
network updates could only be sent very seldom by the low frame-rate client.

An evaluation of the usage of network resources by the algorithm has been done by measuring
the number of PlayerPos packages sent per second. These measurements have been made by
driving around the track as smoothly as possible to produce a consistent result, and using different
arbitrarily chosen threshold levels. The graph in Figure 7.5 shows the results, along with a base
line showing a simple extrapolation algorithm with a fixed packet send rate of 30 updates per
second.
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Figure 7.5: A comparison of the rate of PlayerPos updates, using a simple extrapolation tech-
nique and a dead reckoning technique with different threshold values. Threshold values are in an
arbitrary (x, y, z) unit.

The measurements indicate that the implemented dead reckoning algorithm differs very little
in network usage from the standard extrapolation algorithm in practice outside the occasional
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deviation (such as in the dead reckoning algorithm with a threshold of (50, 50, 50) units at around
second 92) which may be explained by erratic driving during the test. Only when using very large
threshold values, such as (100, 100, 100) units, does the send rate differ considerably. However,
such high thresholds produces jagged player movements, and are thus not viable.

In conclusion, the network techniques implemented in the game have been found to be largely
well chosen and the results are satisfactory, while allowing possible improvements in the future.
However, the implementation of dead reckoning might not have been as time efficient as previ-
ously thought, as a simple extrapolation technique would have been much easier to implement
and would produce very similar results. Relating to the goals stated for the project, the network-
ing functionality has been successfully implemented, and is also found to add greatly to the
playability of the game and thus the commercial appeal and viability as well.



8
Results

Night Racer set out with quite ambitious goals: most centrally creating a visually pleasing multi-
player racing game, and has largely succeeded.

The game in action is graphically refined; even though the graphical fidelity is not up to par with
commercial games, it fulfills the conditions stated by the authors for a visually pleasing game.
Night Racer offers the player a basic gameplay experience, with a single type of game mode and
simple controls. The car handling is not advanced but serves to give the player both a sense of
speed and a satisfying sense of control.

The game mode, which is a simple time trial, is available for both singleplayer and multiplayer
use. Multiplayer is available through network resources such as LAN or the Internet.

The game is able to run smoothly on the target hardware and can thus be said to successfully fulfill
the requirements set for the project. The game does however suffer a framerate drop on weaker
machines, such as laptops or older desktop PCs. This, and the fact that some assets (models and
sounds) used in the game belong to a legal grayzone (obtained from the Internet) means that
the game is not entirely commercially viable. However, Night Racer does mostly adhere to the
definition of commercial viability presented in Section 1.1; the game could work as a technical
demonstration that could be used to gather funds from a potential investor or a crowdsourcing
project for its continued development.

The goals stated for the product can therefore be said to be fulfilled. The problems that were set
to be examined in this thesis have been evaluated and answered in their respective chapters, and
the reader would be advised to refer to each section in order to receive an accurate assessment to
each problem. The authors’ opinion on the finished product, not necessarily tied to the goals and
problems, will be presented in the discussion section.
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Discussion

Night Racer is by no means a finished game, nor was it intended to be. It was recognized very
early on in the development phase that making a polished and complete game, and making a
graphically refined game are goals that are at odds with one another. As such, making a finished
game was never the purpose of this project. Nonetheless, it can be of interest to reflect on the state
of the game today, and what could have been done differently.

The game is deemed by the authors as visually pleasing, with some very effective use of particle
effects, reflections, colors, and extensive lighting. In particular, always trying to incorporate a
sense of movement (whether it is by light sources changing intensity or color, or with particle
effects such as drifting smoke) has made the game feel much more alive, and spending time on
such effects were a largely productive use of time.

There are some lacking parts of the graphical impression, and the most prominent is a lack of
diversity in the game world. Firstly, the generated levels are mostly flat since the lack of a physics
engine would make racing on more hilly terrain ineffectual. Secondly, there is a lack of graphical
objects placed around the map which makes the world seem very empty. Lastly, procedural
generation is not used to its full extent since all generated race tracks and terrains differ very little
from each run. While there never was a large focus on these areas, the project may have benefited
by at least some time being allocated for reviewing this issue.

As for playability, the simple race mode provided with the game is not particularly interesting,
especially since no collision detection between cars nor realistic car handling has been imple-
mented. This, however, is where software extensibility is of importance, since more interesting
game modes can be implemented with the provided interfaces for game modes and triggers. Soft-
ware extension of Night Racer in general may present a few problems though, since the code is
largely undocumented, and some parts of the software architecture is quite disorganized. This is
largely due to a lack of previous experience in XNA, and that coupled with having a very early
deadline of producing a first playable demo version was quite dissuading of proper planning
of code structure. Doing the project over, some time would be spent in the software modeling
stages.

Using XNA for the project has been a mostly positive experience, but for a game with the express
goal of being visually pleasing, using a more complete engine would have been advisable. Game
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engines such as Unity or Unreal Engine would have most likely allowed more time to be focused
on the graphical fidelity in a much more detailed way, and more time could be spent perfecting
the graphics instead of constantly building in more techniques. This would of course not facilitate
the in-depth research of graphical techniques conducted during this project, but it is the recom-
mendation of the authors to game developers operating under similar conditions to extensively
consider such an option, as the results will be more pleasing.

It is easy to get stuck discussing what could have been executed better, but the authors of this
thesis consider the project and Night Racer itself a success, and while it will not attract many
players, it may have the potential to do so with some further work.



10
Conclusions

This Bachelor’s thesis has described the development of a racing game with focus on visually
pleasing 3D graphics and plausibility of future commercial viability. Secondarily, providing ba-
sic playability as well as a multiplayer mode has been goals of the project. The game, called
Night Racer, has been developed by a small-scale team under a 16 week time constraint, and
programmed using Microsoft’s XNA framework with the C# programming language.

The problem areas which have been researched and presented in their respective chapters in this
thesis are the game engine implementation, level design methodology, identification of applicable
graphical algorithms for providing visually pleasing results, optimization without sacrificing
visual quality, game world immersion with audio, and techniques for providing smooth gameplay
over a network.

Night Racer features a game engine consisting of a game state manager, a user interface with clear
and non-distracting elements, a game mode with both singleplayer and multiplayer capabilities,
and a trigger system which is used for checkpoints. While not featuring several game modes
within a singleplayer campaign, the game engine is very extendable for such additions. The game
also features procedural generation of terrain using a Perlin noise generator, creating greater
replayability with diverse levels. As the terrain is randomly generated, the generator uses a
unique seed value which allows for levels to be efficiently distributed to other players over the
network.

The goal of a visually pleasing game has been reached by extensive use of graphical effects such as
lighting, shadows, reflections with environment maps, and particle systems. To further improve
the results, post-processing effects (namely blur, bloom, and motion blur) are used. The audio
assets of the game are not complete, however, the sound engine used in this game enables the
addition of new assets with ease. As mentioned earlier, network play is implemented providing
smooth gameplay through use of the technique known as dead reckoning. Finally, rendering
optimizations like viewing frustum culling and backface culling are implemented to make the
game run smoother by identifying areas not visible to the camera.

The results are deemed by the authors as quite good considering the choice of a development
environment that provided relatively few complete game functionalities. The authors would
advice that a more complete development kit, such as Unity or UDK, would be considered in
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order to quickly create a working game, instead of building the game from scratch. While not ideal
for developing a visually pleasing game under a time constraint, XNA does allow for interesting
insight into the underlying techniques of game development.



11
Future Work

Although the results of this project were successful, the game still misses some of the features
discussed at the start and during the project. Some of these features are quite easy to implement,
such as polishing of the interface, and could make an apparent difference to the overall game
experience. Other features are more substantial and would require numerous working hours to
implement.

The main component missing in the game is content, as discussed before. Content can be added
to several areas, such as adding simple assets throughout the game world using simple billboard
models. Additionally, providing more cars in the car chooser is arbitrarily easy if using pre-made
models, but has not been a focus during the development. Making the levels more interesting
could be accomplished by using the pseudo-random generator for more environmental variables
such as ground texture, height differences on the track, and spawning events such as thunder-
storms. Related to the variety in content, the algorithm to position the assets in the world can
be greatly improved. Convincing positioning of assets is not trivial, as each asset needs to be
dependent on the already positioned assets.

Another feature lacking in order to attract the players to continue playing is a single player
campaign featuring multiple game modes with varying difficulty levels. The goal of each level
could be to finish varying objectives, such as destroying the opponent’s car. The game could also
feature some sort of collection-based awards to achieve further replayability. This is quite easy to
implement using the game mode system implemented in the game engine.

When providing single player gaming, the ability to save levels is valuable. This could either be
implemented by saving the generated components of the map (such as the height map of the
terrain) or simply saving the random seed used to generate these, discussed in Section 3.4. The
advantage of saving the seed is the portability; the seed is of very limited size, thus problems with
distribution and memory do not arise. However, the disadvantage being increased load times as
the components need to be regenerated every time the player starts a level to play.

The ability to save maps is also applicable to the multiplayer game modes as players probably
would like to compete on the same map to improve their high scores. The results can be saved
attached to the seed to get a scoreboard easily distributable to a central server.

71



CHAPTER 11. FUTURE WORK 72

As mentioned in the Discussion section, the game lacks real physics simulations. With a real
physics engine implemented, the game would feel more realistic and fun, as it may enable the
players to jump with their cars and provide more realistic car handling. The players in multiplayer
game modes could also collide with one another to make the other player crash instead of com-
peting against each other under the equal circumstances presented when not having a collision
response between cars.

Finally, more optimizations could be implemented to support less powerful hardware. This could
be done by choosing models with lower resolutions and optimize the prelighting process as they
have been found to require the most computational power.
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